1
|
Li D, Huang W, Huang R. Analysis of environmental pollutants using ion chromatography coupled with mass spectrometry: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131952. [PMID: 37399723 DOI: 10.1016/j.jhazmat.2023.131952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
The rise of emerging pollutants in the current environment and requirements of trace analysis in complex substrates pose challenges to modern analytical techniques. Ion chromatography coupled with mass spectrometry (IC-MS) is the preferred tool for analyzing emerging pollutants due to its excellent separation ability for polar and ionic compounds with small molecular weight and high detection sensitivity and selectivity. This paper reviews the progress of sample preparation and ion-exchange IC-MS methods in the analysis of several major categories of environmental polar and ionic pollutants including perchlorate, inorganic and organic phosphorus compounds, metalloids and heavy metals, polar pesticides, and disinfection by-products in past two decades. The comparison of various methods to reduce the influence of matrix effect and improve the accuracy and sensitivity of analysis are emphasized throughout the process from sample preparation to instrumental analysis. Furthermore, the human health risks of these pollutants in the environment with natural concentration levels in different environmental medias are also briefly discussed to raise public attention. Finally, the future challenges of IC-MS for analysis of environmental pollutants are briefly discussed.
Collapse
Affiliation(s)
- Dazhen Li
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weixiong Huang
- Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, Wuhan 430078, Hubei, China.
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Abstract
One of the possibilities of removing heavy metals (HMs) from soil is the use of phytoremediation techniques supported with biosolids, which also allow for their disposal. Therefore, the objective of the research was the determination of the sewage sludge suitability after its application to urban soil in order to increase the phytoremediation efficiency of contaminated soil. A field experiment was established on lawns in Białystok (Poland) in two locations with different traffic. The research plots were fertilized with sludge in doses of 14.5 t DM/ha and 29 t DM/ha. A mixture of lawn grasses was sown on the prepared plots. During two years of experiment soil/plant samples were collected, and pH, organic matter, dehydrogenase and catalase activity (soil), the total content of Cd, Cr, Cu, Mo, Ni, Pb, Zn, and Hg (soil/plant), and their fractions (soil) were determined. The HMs in soil were present mainly in residual and reducible fractions. Zn had the highest share in acid-soluble fractions (17–45%). The efficiency of urban soil phytoremediation was determined by the calculation of bioconcentration (BCF) and translocation (TF) factors. The highest values for BCF and TF were obtained for Mo (1.97 and 1.99, respectively). In the presented study, sludge amendment caused an immobilization of heavy metals.
Collapse
|
3
|
Jiang L, Zhang R, Zhang L, Zheng R, Zhong M. Improving the regulatory health risk assessment of mercury-contaminated sites. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123493. [PMID: 32707467 DOI: 10.1016/j.jhazmat.2020.123493] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
An alternative risk assessment strategy for mercury (Hg)-contaminated sites is proposed with bioaccessible fractions and soil Hg vapor (SHgV) concentrations. The new strategy avoids the conservatism of assessment rely on soil total Hg (THg) content and inaccuracy caused by predicted SHgV concentration. The exposure risk to Hg-contaminated soil associated with historical mining activities in Guizhou, China, was evaluated using the proposed strategy. The experimental results revealed that the average bioaccessibility in gastric, intestinal and lung phases was 10.39 % (2.09 % ∼ 35.28 %), 1.28 % (0.23 % ∼ 4.3 %), and 11.27 % (5.04 % ∼ 20.71 %), respectively. Via the proposed strategy, the Hg risk for the oral ingestion pathway, represented as the hazard quotient (HQ), decreased from 1.57 to an acceptable level of 0.19 (<1). The risk of SHgV inhalation sharply decreased from 1168 to 0.35 while the soil PM10 inhalation pathway did not exhibit significant variations. The dominant exposure pathways turned to oral intake and inhalation of SHgV by the strategy. The results indicated that the proposed assessment strategy can greatly improve the understanding of the exposure risk level at Hg-contaminated sites and provide a reasonable decision basis for decision makers.
Collapse
Affiliation(s)
- Lin Jiang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China.
| | - Ruihuan Zhang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Lina Zhang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Rui Zheng
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China; Capital Normal University, Beijing, 100045, China
| | - Maosheng Zhong
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| |
Collapse
|
4
|
Denmark IS, Begu E, Arslan Z, Han FX, Seiter-Moser JM, Pierce EM. Removal of inorganic mercury by selective extraction and coprecipitation for determination of methylmercury in mercury-contaminated soils by chemical vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Anal Chim Acta 2018; 1041:68-77. [PMID: 30340692 DOI: 10.1016/j.aca.2018.08.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/15/2018] [Accepted: 08/25/2018] [Indexed: 12/19/2022]
Abstract
A procedure is developed for selective extraction of methylmercury (CH3Hg+) from heavily Hg-contaminated soils and sediments for determination by chemical vapor generation inductively coupled plasma mass spectrometry (CVG-ICP-MS). Soils artificially contaminated with 40 μg g-1 inorganic mercury (Hg2+) or methylmercury chloride (CH3HgCl) were agitated by shaking or exposing to ultrasounds in dilute hydrochloric acid (HCl) or nitric acid (HNO3) solutions at room temperature. Extractions in HCl (5 or 10% v/v) resulted in substantial leaching of Hg2+ from soils, whereas 5% (v/v) HNO3 provided selectivity for quantitative extraction of CH3Hg+ with minimum Hg2+ leaching. Agitation with ultrasounds in 5% (v/v) HNO3 for about 3 min was sufficient for extraction of all CH3Hg+ from soils. Coprecipitations with Fe(OH)3, Bi(OH)3 and HgS were investigated for removal of residual Hg2+ in soil extracts. Hydroxide precipitations were not effective. Thiourea or l-cysteine added to soil extracts prior to hydroxide precipitation improved precipitation of Hg2+, but also resulted in removal of CH3Hg+. HgS precipitation was made with dilute ammonium sulfide solution, (NH4)2S. Adding 30 μL of 0.35 mol L-1 (NH4)2S to soil extracts in 5% (v/v) HNO3 resulted in removal of all residual Hg2+ without impacting CH3Hg+ levels. Vapor generation was carried out by reacting Hg2+-free soil extracts with 1% (m/v) NaBH4. No significant interferences were observed from (NH4)2S on the vapor generation from CH3Hg+. The slopes of the calibration curves for CH3HgCl standard solutions in 5% (v/v) HNO3 with and without (NH4)2S were similar. Limits of detection (LOD, 3s method) were around 0.08 μg L-1 for 5% (v/v) HNO3 blanks (n = 10) and 0.10 μg L-1 for 5% (v/v) HNO3 + 0.005 mol L-1 (NH4)2S blanks (n = 10). Percent relative standard deviation (%RSD) for five replicate measurements varied between 3.1% and 6.4% at 1.0 CH3HgCl level. The method is validated by analysis of two certified reference materials (CRM); purely Methylmercury sediment (SQC1238, 10.00 ± 0.291 ng g-1 CH3Hg+) and Hg-contaminated Estuarine sediment (ERM - CC580, 75 ± 4 ng g-1 CH3Hg+ and 132 ± 3 μg g-1 total Hg). CH3Hg+ values for SQC1238 were between 13.0 and 13.2 ng g-1, and 79 and 81 ng g-1 for ERM - CC580. Hg-contaminated soils (57-96 μg g-1 total Hg) collected from the floodplains of Oak Ridge, TN were analyzed for CH3Hg+ using the procedure by CVG-ICPMS. CH3Hg+ levels ranged from 30 to 51 ng g-1 and did not correlate with total Hg levels (R2 = 0.01).
Collapse
Affiliation(s)
- Iris S Denmark
- Jackson State University, Department of Chemistry, Physics and Atmospheric Sciences, Jackson, MS, 39217, USA
| | - Ermira Begu
- Jackson State University, Department of Chemistry, Physics and Atmospheric Sciences, Jackson, MS, 39217, USA
| | - Zikri Arslan
- Jackson State University, Department of Chemistry, Physics and Atmospheric Sciences, Jackson, MS, 39217, USA.
| | - Fengxiang X Han
- Jackson State University, Department of Chemistry, Physics and Atmospheric Sciences, Jackson, MS, 39217, USA
| | - Jennifer M Seiter-Moser
- Environmental Laboratory, Engineer Research and Development Center (ERDC), Vicksburg, MS, 39180, USA
| | - Eric M Pierce
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
5
|
Ion-pairing reversed-phase chromatography coupled to inductively coupled plasma mass spectrometry as a tool to determine mercurial species in freshwater fish. J Chromatogr A 2018; 1531:104-111. [DOI: 10.1016/j.chroma.2017.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/17/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
|
6
|
Kodamatani H, Balogh SJ, Nollet YH, Matsuyama A, Fajon V, Horvat M, Tomiyasu T. An inter-laboratory comparison of different analytical methods for the determination of monomethylmercury in various soil and sediment samples: A platform for method improvement. CHEMOSPHERE 2017; 169:32-39. [PMID: 27855329 DOI: 10.1016/j.chemosphere.2016.10.129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 10/22/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
An inter-laboratory study was conducted to compare results from different analytical methods for monomethylmercury (MeHg) concentrations in 17 soil and sediment samples. The samples were collected from mercury-contaminated areas, including Minamata Bay and Kagoshima Bay in Japan, the Idrija mercury mine in Slovenia, and an artisanal small-scale gold mining area in Indonesia. The Hg in these samples comes from several different sources: industrial waste from an acetaldehyde production facility, volcanic activity, Hg mining activity, and artisanal and small-scale gold mining activity (ASGM). MeHg concentrations in all the samples were measured in four separate laboratories, using three different determination methods: Kagoshima University (Japan), using high-performance liquid chromatography-chemiluminescence detection (HPLC-CL); National Institute for Minamata Disease (Japan), using gas chromatography-electron capture detection; and Metropolitan Council Environmental Services (USA) and Jozef Stefan Institute (Slovenia), both using alkylation-gas chromatography-atomic fluorescence spectrometry detection. The methods gave comparable MeHg results for most of the samples tested, but for some samples, the results exhibited significant variability depending on the method used. The HPLC-CL method performed poorly when applied to samples with elevated sulfur concentrations, producing MeHg concentrations that were much lower than those from the other methods. Additional analytical work demonstrated the elimination of this sulfur interference when the method was modified to bind sulfur prior to the analytical step by using Hg2+ as a masking agent. These results demonstrate the value of laboratory intercomparison exercises in contributing to the improvement of analytical methods.
Collapse
Affiliation(s)
- Hitoshi Kodamatani
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Steven J Balogh
- Metropolitan Council Environmental Services, 2400 Childs Road, St. Paul, MN 55106, USA
| | - Yabing H Nollet
- Metropolitan Council Environmental Services, 2400 Childs Road, St. Paul, MN 55106, USA
| | - Akito Matsuyama
- National Institute for Minamata Disease, Minamata, Kumamoto 867-0008, Japan
| | - Vesna Fajon
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana 1000, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana 1000, Slovenia
| | - Takashi Tomiyasu
- Division of Earth and Environmental Science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
7
|
Pietilä H, Perämäki P, Piispanen J, Starr M, Nieminen T, Kantola M, Ukonmaanaho L. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods. CHEMOSPHERE 2015; 124:47-53. [PMID: 25434268 DOI: 10.1016/j.chemosphere.2014.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/16/2014] [Accepted: 11/01/2014] [Indexed: 06/04/2023]
Abstract
Most often, only total mercury concentrations in soil samples are determined in environmental studies. However, the determination of extremely toxic methylmercury (MeHg) in addition to the total mercury is critical to understand the biogeochemistry of mercury in the environment. In this study, N2-assisted distillation and acidic KBr/CuSO4 solvent extraction methods were applied to isolate MeHg from wet peat soil samples collected from boreal forest catchments. Determination of MeHg was performed using a purge and trap GC-ICP-MS technique with a species-specific isotope dilution quantification. Distillation is known to be more prone to artificial MeHg formation compared to solvent extraction which may result in the erroneous MeHg results, especially with samples containing high amounts of inorganic mercury. However, methylation of inorganic mercury during the distillation step had no effect on the reliability of the final MeHg results when natural peat soil samples were distilled. MeHg concentrations determined in peat soil samples after distillation were compared to those determined after the solvent extraction method. MeHg concentrations in peat soil samples varied from 0.8 to 18 μg kg(-1) (dry weight) and the results obtained with the two different methods did not differ significantly (p=0.05). The distillation method with an isotope dilution GC-ICP-MS was shown to be a reliable method for the determination of low MeHg concentrations in unpolluted soil samples. Furthermore, the distillation method is solvent-free and less time-consuming and labor-intensive when compared to the solvent extraction method.
Collapse
Affiliation(s)
- Heidi Pietilä
- Finnish Forest Research Institute, Oulu Research Unit, P.O. Box 413, FI-90014 University of Oulu, Finland; University of Oulu, Department of Physics and Chemistry, P.O. Box 3000, FI-90014 University of Oulu, Finland
| | - Paavo Perämäki
- University of Oulu, Department of Physics and Chemistry, P.O. Box 3000, FI-90014 University of Oulu, Finland.
| | - Juha Piispanen
- Finnish Forest Research Institute, Oulu Research Unit, P.O. Box 413, FI-90014 University of Oulu, Finland
| | - Mike Starr
- University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland
| | - Tiina Nieminen
- Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland
| | - Marjatta Kantola
- Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland
| | - Liisa Ukonmaanaho
- Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland
| |
Collapse
|
8
|
Online anion exchange column preconcentration and high performance liquid chromatographic separation with inductively coupled plasma mass spectrometry detection for mercury speciation analysis. Anal Chim Acta 2014; 828:9-16. [DOI: 10.1016/j.aca.2014.04.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 11/20/2022]
|
9
|
Kodamatani H, Tomiyasu T. Selective determination method for measurement of methylmercury and ethylmercury in soil/sediment samples using high-performance liquid chromatography-chemiluminescence detection coupled with simple extraction technique. J Chromatogr A 2013; 1288:155-9. [PMID: 23522263 DOI: 10.1016/j.chroma.2013.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 11/28/2022]
Abstract
A method for the simultaneous determination of monomethylmercury (MeHg(+)) and monoethylmercury (EtHg(+)) in soil/sediment samples was developed. The method involves eluting mercury species from the soil/sediment samples using 5M HCl containing 5mM Pd(2+) and 0.1M Cu(2+) and then extracting MeHg(+) and EtHg(+) into toluene as chlorides. These alkylmercury chlorides are then back-extracted into an aqueous EDTA solution, creating EDTA complexes. Finally, an emetine-dithiocarbamate (emetineCS2) solution is added to the EDTA solution to form emetineCS2-alkylmercury complexes. EmetineCS2-MeHg and emetineCS2-EtHg were separated using reverse-phase HPLC and then detected by the chemiluminescence reaction with tris(2,2'-bipyridine)ruthenium(III). The MeHg(+) and EtHg(+) calibration curves, using the peak height, were linear from 0.5 to 20ng (as Hg). The detection limit was 0.16ng/g (analyzing 1g soil or sediment). The procedure was validated by analyzing a certified reference material (ERM CC580, estuarine sediment). The MeHg(+) concentration determined using the proposed method was in good agreement with the certified value, and EtHg(+) was detected in the reference material. A preliminary study of the relationship between environmental mercury concentrations and MeHg(+) production was performed.
Collapse
Affiliation(s)
- Hitoshi Kodamatani
- Division of Earth and Environmental science, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | | |
Collapse
|
10
|
Ibáñez-Palomino C, López-Sánchez JF, Sahuquillo A. Certified reference materials for analytical mercury speciation in biological and environmental matrices: Do they meet user needs?; a review. Anal Chim Acta 2012; 720:9-15. [DOI: 10.1016/j.aca.2012.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/22/2011] [Accepted: 01/05/2012] [Indexed: 11/29/2022]
|