1
|
Williams LJ, Tristram SG, Zosky GR. Geogenic particles induce bronchial susceptibility to non-typeable Haemophilus influenzae. ENVIRONMENTAL RESEARCH 2023; 236:116868. [PMID: 37567381 DOI: 10.1016/j.envres.2023.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Exposure to geogenic (earth-derived) particulate matter (PM) is linked to an increased prevalence of bronchiectasis and other respiratory infections in Australian Indigenous communities. Experimental studies have shown that the concentration of iron in geogenic PM is associated with the magnitude of respiratory health effects, however, the mechanism is unclear. We investigated the effect of geogenic PM and iron oxide on the invasiveness of non-typeable Haemophilus influenzae (NTHi). Peripheral blood mononuclear cell-derived macrophages or epithelial cell lines (A549 & BEAS-2B) were exposed to whole geogenic PM, their primary constituents (haematite, magnetite or silica) or diesel exhaust particles (DEP). The uptake of bacteria was quantified by flow cytometry and whole genome sequencing (WGS) was performed on NTHi strains. Geogenic PM increased the invasiveness of NTHi in bronchial epithelial cells. Of the primary constituents, haematite also increased NTHi invasion with magnetite and silica having significantly less impact. Furthermore, we observed varying levels of invasiveness amongst NTHi isolates. WGS analysis suggested isolates with more genes associated with heme acquisition were more virulent in BEAS-2B cells. The present study suggests that geogenic particles can increase the susceptibility of bronchial epithelial cells to select bacterial pathogens in vitro, a response primarily driven by haematite content in the dust. This demonstrates a potential mechanism linking exposure to iron-laden geogenic PM and high rates of chronic respiratory infections in remote communities in arid environments.
Collapse
Affiliation(s)
- Lewis J Williams
- Tasmanian School of Medicine, University of Tasmania, Hobart, 7000, Australia
| | - Stephen G Tristram
- School of Health Sciences, University of Tasmania, Launceston, 7250, Australia
| | - Graeme R Zosky
- Tasmanian School of Medicine, University of Tasmania, Hobart, 7000, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Australia.
| |
Collapse
|
2
|
Lei J, Chen R, Liu C, Zhu Y, Xue X, Jiang Y, Shi S, Gao Y, Kan H, Xuan J. Fine and coarse particulate air pollution and hospital admissions for a wide range of respiratory diseases: a nationwide case-crossover study. Int J Epidemiol 2023; 52:715-726. [PMID: 37159523 DOI: 10.1093/ije/dyad056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND The associations between fine and coarse particulate matter (PM2.5 and PM2.5-10) air pollution and hospital admissions for full-spectrum respiratory diseases were rarely investigated, especially for age-specific associations. We aim to estimate the age-specific associations of short-term exposures to PM2.5 and PM2.5-10 with hospital admissions for full-spectrum respiratory diseases in China. METHODS We conducted an individual-level case-crossover study based on a nationwide hospital-based registry including 153 hospitals across 20 provincial regions in China in 2013-20. We applied conditional logistic regression models and distributed lag models to estimate the exposure- and lag-response associations. RESULTS A total of 1 399 955 hospital admission records for various respiratory diseases were identified. The associations of PM2.5 and PM2.5-10 with total respiratory hospitalizations lasted for 4 days, and an interquartile range increase in PM2.5 (34.5 μg/m3) and PM2.5-10 (26.0 μg/m3) was associated with 1.73% [95% confidence interval (95% CI): 1.34%, 2.12%)] and 1.70% (95% CI: 1.31%, 2.10%) increases, respectively, in total respiratory hospitalizations over lag 0-4 days. Acute respiratory infections (i.e. pneumonia, bronchitis and bronchiolitis) were consistently associated with PM2.5 or PM2.5-10 exposure across different age groups. We found the disease spectrum varied by age, including rarely reported findings (i.e. acute laryngitis and tracheitis, and influenza) among children and well-established associations (i.e. chronic obstructive pulmonary disease, asthma, acute bronchitis and emphysema) among older populations. Besides, the associations were stronger in females, children and older populations. CONCLUSIONS This nationwide case-crossover study provides robust evidence that short-term exposure to both PM2.5 and PM2.5-10 was associated with increased hospital admissions for a wide range of respiratory diseases, and the spectra of respiratory diseases varied by age. Females, children and older populations were more susceptible.
Collapse
Affiliation(s)
- Jian Lei
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Renjie Chen
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Cong Liu
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Yixiang Zhu
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Xiaowei Xue
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Yixuan Jiang
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Su Shi
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Ya Gao
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
- National Center for Children's Health, Children's Hospital of Fudan University, Shanghai, China
| | - Jianwei Xuan
- Health Economic Research Institute, School of Pharmacy, Sun Yat-Shen University, Guangzhou, China
| |
Collapse
|
3
|
Zhang S, Chen X, Dai C, Wang J, Wang H. Associations between air pollutants and risk of respiratory infection: patient-based bacterial culture in sputum. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:4007-4016. [PMID: 34806153 DOI: 10.1007/s10653-021-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023]
Abstract
Air pollution is a crucial risk factor for respiratory infection. However, the relationships between air pollution and respiratory infection based on pathogen detection are scarcely explored in the available literature. We detected respiratory infections through patient-based bacterial culture in sputum, obtained hourly data of all six pollutants (PM2.5, PM10, SO2, NO, CO, and O3) from four air quality monitoring stations, and assessed the relationships of air pollutants and respiratory bacterial infection and multi-drug-resistant bacteria. Air pollution remains a challenge for Mianyang, China, especially PM2.5 and PM10, and there are seasonal differences; pollution is the heaviest in winter and the lowest in summer. A total of 4237 pathogenic bacteria were detected, and the positive rate of multi-drug-resistant bacteria was 0.38%. Similar seasonal differences were found with respect to respiratory infection. In a single-pollutant model, all pollutants were significantly associated with respiratory bacterial infection, but only O3 was significantly associated with multi-drug-resistant bacteria. In multi-pollutant models (adjusted for one pollutant), the relationships of air pollutants with respiratory bacterial infection remained significant, while PM2.5, PM10, and O3 were significantly associated with the risk of infection with multi-drug-resistant bacteria. When adjusted for other five pollutants, only O3 was significantly associated with respiratory bacterial infection and the risk of infection with multi-drug-resistant bacteria, showing that O3 is an independent risk factor for respiratory bacterial infection and infection with multi-drug-resistant bacteria. In summary, this study highlights the adverse effects of air pollution on respiratory infection and the risk of infection with multi-drug-resistant bacteria, which may provide a basis for the formulation of environmental policy to prevent respiratory infections.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Department of Clinical Laboratory Medicine, Suining Central Hospital, 127 Deshengxi Rd., Suining, 629000, Sichuan, China
| | - Xi Chen
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China
| | - Chunmei Dai
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China
| | - Jing Wang
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, Mianyang, 621000, Sichuan, China
| | - Huanhuan Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd., Shantou, 515041, Guangdong, China.
| |
Collapse
|
4
|
Zhang S, Chen X, Wang J, Dai C, Gou Y, Wang H. Particulate air pollution and respiratory Haemophilus influenzae infection in Mianyang, southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13103-5. [PMID: 33638077 DOI: 10.1007/s11356-021-13103-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 02/05/2023]
Abstract
Particulate air pollution is correlated with many respiratory diseases. However, few studies have focused on the relationship between air particulate exposure and respiratory Heamophilus influenzae infection. Therefore, we detected respiratory Heamophilus influenzae infection by bacterial culture of sputum of patients, and we collected particulate air pollution data (including PM2.5 and PM10) from a national real-time urban air quality platform to analyze the relationship between particulate air pollution and respiratory Heamophilus influenzae infection. The mean concentrations of PM2.5 and PM10 were 37.58 μg/m3 and 58.44 μg/m3, respectively, showing particulate air pollution remains a severe issue in Mianyang. A total of 828 strains of Heamophilus influenzae were detected in sputum by bacterial culture. Multiple correspondence analysis suggested the heaviest particulate air pollution and the highest Heamophilus influenzae infection rates were all in winter, while the lowest particulate air pollution and the lowest Heamophilus influenzae infection rates were all in summer. In a single-pollutant model, each elevation of 10 μg/m3 of PM2.5, PM10, and PM2.5/10 (combined exposure level) increased the risk of respiratory Heamophilus influenzae infection by 34%, 23%, and 29%, respectively. Additionally, in the multiple-pollutant model, only PM2.5 was significantly associated with respiratory Heamophilus influenzae infection (B, 0.46; 95% confidence interval, 0.05-0.87), showing PM2.5 is an independent risk factor for respiratory Heamophilus influenzae infection. In summary, this study highlights air particulate exposure could increase the risk of respiratory Heamophilus influenzae infection, implying that stronger measures need to be taken to protect against respiratory infection induced by particulate air pollution.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Xi Chen
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, 12 Changjia Lane, Jingzhong St, Mianyang, 621000, Sichuan, China.
| | - Jing Wang
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, 12 Changjia Lane, Jingzhong St, Mianyang, 621000, Sichuan, China
| | - Chunmei Dai
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, 12 Changjia Lane, Jingzhong St, Mianyang, 621000, Sichuan, China
| | - Yeran Gou
- Department of Respiratory and Critical Care Medicine, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| | - Huanhuan Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China.
| |
Collapse
|
5
|
Williams LJ, Tristram SG, Zosky GR. Iron Oxide Particles Alter Bacterial Uptake and the LPS-Induced Inflammatory Response in Macrophages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 18:ijerph18010146. [PMID: 33379200 PMCID: PMC7794962 DOI: 10.3390/ijerph18010146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022]
Abstract
Exposure to geogenic (earth-derived) particulate matter (PM) is linked to severe bacterial infections in Australian Aboriginal communities. Experimental studies have shown that the concentration of iron in geogenic PM is associated with the magnitude of respiratory health effects, however, the mechanism is unclear. We investigated the effect of silica and iron oxide on the inflammatory response and bacterial phagocytosis in macrophages. THP-1 and peripheral blood mononuclear cell-derived macrophages were exposed to iron oxide (haematite or magnetite) or silica PM with or without exposure to lipopolysaccharide. Cytotoxicity and inflammation were assessed by LDH assay and ELISA respectively. The uptake of non-typeable Haemophilus influenzae by macrophages was quantified by flow cytometry. Iron oxide increased IL-8 production while silica also induced significant production of IL-1β. Both iron oxide and silica enhanced LPS-induced production of TNF-α, IL-1β, IL-6 and IL-8 in THP-1 cells with most of these responses replicated in PBMCs. While silica had no effect on NTHi phagocytosis, iron oxide significantly impaired this response. These data suggest that geogenic particles, particularly iron oxide PM, cause inflammatory cytokine production in macrophages and impair bacterial phagocytosis. These responses do not appear to be linked. This provides a possible mechanism for the link between exposure to these particles and severe bacterial infection.
Collapse
Affiliation(s)
- Lewis J. Williams
- Tasmanian School of Medicine, University of Tasmania, 7000 Hobart, Australia;
| | - Stephen G. Tristram
- School of Health Sciences, University of Tasmania, 7250 Launceston, Australia;
| | - Graeme R. Zosky
- Tasmanian School of Medicine, University of Tasmania, 7000 Hobart, Australia;
- Menzies Institute for Medical Research, University of Tasmania, 7000 Hobart, Australia
- Correspondence: ; Tel.: +61-3-6226-6921
| |
Collapse
|