1
|
Yu Y, Alseekh S, Zhu Z, Zhou K, Fernie AR. Multiomics and biotechnologies for understanding and influencing cadmium accumulation and stress response in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2641-2659. [PMID: 38817148 PMCID: PMC11536459 DOI: 10.1111/pbi.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Cadmium (Cd) is one of the most toxic heavy metals faced by plants and, additionally, via the food chain, threatens human health. It is principally dispersed through agro-ecosystems via anthropogenic activities and geogenic sources. Given its high mobility and persistence, Cd, although not required, can be readily assimilated by plants thereby posing a threat to plant growth and productivity as well as animal and human health. Thus, breeding crop plants in which the edible parts contain low to zero Cd as safe food stuffs and harvesting shoots of high Cd-containing plants as a route for decontaminating soils are vital strategies to cope with this problem. Recently, multiomics approaches have been employed to considerably enhance our understanding of the mechanisms underlying (i) Cd toxicity, (ii) Cd accumulation, (iii) Cd detoxification and (iv) Cd acquisition tolerance in plants. This information can be deployed in the development of the biotechnological tools for developing plants with modulated Cd tolerance and detoxification to safeguard cellular and genetic integrity as well as to minimize food chain contamination. The aim of this review is to provide a current update about the mechanisms involved in Cd uptake by plants and the recent developments in the area of multiomics approach in terms of Cd stress responses, as well as in the development of Cd tolerant and low Cd accumulating crops.
Collapse
Affiliation(s)
- Yan Yu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| | - Zonghe Zhu
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Kejin Zhou
- School of AgronomyAnhui Agricultural UniversityHefeiChina
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- Center of Plant Systems Biology and BiotechnologyPlovdivBulgaria
| |
Collapse
|
2
|
Li Z, Hao X, He T, Chen Y, Yang M, Rong C, Gu C, Xiao Q, Lin R, Zheng X. Bamboo vinegar regulates the phytoremediation efficiency of Perilla frutescens (L.) Britt. by reducing membrane lipid damage and increasing cadmium retention. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135155. [PMID: 38991637 DOI: 10.1016/j.jhazmat.2024.135155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
The gap between serious soil heavy metals pollution and inefficient soil remediation threatens human health. This study proposed a method to improve the phytoremediation efficiency using bamboo vinegar (BV) solution and the potential mechanism was discussed. The results demonstrated that the application of BV increases the content of cadmium (Cd) in vacuole and cell wall hemicellulose 2 in leaves of Perilla frutescens. Simultaneously, it enhanced enzyme activities of superoxide dismutase and catalase in leaves. Therefore, this process alleviated the damage of Cd to functional tissues of Perilla frutescens, thus improving the tolerance of plants to Cd. Moreover, the BV application reduced the Cd content bound by root cell wall pectin fractions and insoluble phosphate, subsequently improving the ability of oxalic acids to carry Cd to the aerial parts. Consequently, the aerial parts obtained a larger amount of Cd enrichment. Overall, the Transfer Factor of Cd from roots to stems and enrichment of Cd in Perilla frutescens were maximally increased by 57.70 % and 54.03 % with the application of 50-fold and 300-fold diluted BV under 2 mg·L-1 Cd stress, respectively. The results can provide a theoretical basis for the promotion of phytoremediation of Cd-contaminated soil treatment technology.
Collapse
Affiliation(s)
- Zhenguo Li
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingyu Hao
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tianlian He
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Chen
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingwei Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cheng Rong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhen Gu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingtie Xiao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruiyu Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Hassan H, Elaksher SH, Shabala S, Ouyang B. Cadmium uptake and detoxification in tomato plants: Revealing promising targets for genetic improvement. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108968. [PMID: 39074436 DOI: 10.1016/j.plaphy.2024.108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Cadmium (Cd) is a hazardous heavy metal known for its detrimental effects on plants, human health, and the environment. This review article delves into the dynamics of Cd uptake, long-distance transport, and its impact on plant performance, with a specific focus on tomato plants. The process of Cd uptake by roots and its subsequent long-distance transport in the xylem and phloem are explored to understand how Cd influences plants operation. The toxic effects of Cd on tomato plants are discussed, highlighting on the challenges it poses to plant growth and development. Furthermore, the review investigates various Cd tolerance mechanisms in plants, including avoidance or exclusion by the root cell wall, root-to-shoot translocation, detoxification pathways, and antioxidative defence systems against Cd-induced stress. In addition, the transcriptomic analyses of tomato plants under Cd stress provide insights into the molecular responses and adaptations of plants to Cd toxicity. Overall, this comprehensive review enhances our understanding of Cd-plant interactions and reveal promising genes for tomato genetic improvement to increase its tolerance to cadmium.
Collapse
Affiliation(s)
- Heba Hassan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China; Genetics Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| | - Salma Hassan Elaksher
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor, 13736, Qalyubia, Egypt.
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA, Australia; International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, 528000, China.
| | - Bo Ouyang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Zhakypbek Y, Kossalbayev BD, Belkozhayev AM, Murat T, Tursbekov S, Abdalimov E, Pashkovskiy P, Kreslavski V, Kuznetsov V, Allakhverdiev SI. Reducing Heavy Metal Contamination in Soil and Water Using Phytoremediation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1534. [PMID: 38891342 PMCID: PMC11174537 DOI: 10.3390/plants13111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
The increase in industrialization has led to an exponential increase in heavy metal (HM) soil contamination, which poses a serious threat to public health and ecosystem stability. This review emphasizes the urgent need to develop innovative technologies for the environmental remediation of intensive anthropogenic pollution. Phytoremediation is a sustainable and cost-effective approach for the detoxification of contaminated soils using various plant species. This review discusses in detail the basic principles of phytoremediation and emphasizes its ecological advantages over other methods for cleaning contaminated areas and its technical viability. Much attention has been given to the selection of hyperaccumulator plants for phytoremediation that can grow on heavy metal-contaminated soils, and the biochemical mechanisms that allow these plants to isolate, detoxify, and accumulate heavy metals are discussed in detail. The novelty of our study lies in reviewing the mechanisms of plant-microorganism interactions that greatly enhance the efficiency of phytoremediation as well as in discussing genetic modifications that could revolutionize the cleanup of contaminated soils. Moreover, this manuscript discusses potential applications of phytoremediation beyond soil detoxification, including its role in bioenergy production and biodiversity restoration in degraded habitats. This review concludes by listing the serious problems that result from anthropogenic environmental pollution that future generations still need to overcome and suggests promising research directions in which the integration of nano- and biotechnology will play an important role in enhancing the effectiveness of phytoremediation. These contributions are critical for environmental scientists, policy makers, and practitioners seeking to utilize phytoremediation to maintain the ecological stability of the environment and its restoration.
Collapse
Affiliation(s)
- Yryszhan Zhakypbek
- Department of Mine Surveying and Geodesy, Institute Mining and Metallurgical Institute named after O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (S.T.); (E.A.)
| | - Bekzhan D. Kossalbayev
- Ecology Research Institute, Khoja Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan;
| | - Ayaz M. Belkozhayev
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi Ave. 71, Almaty 050038, Kazakhstan;
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty 050012, Kazakhstan
| | - Toktar Murat
- Department of Agronomy and Forestry, Faculty of Agrotechnology, Kozybayev University, Petropavlovsk 150000, Kazakhstan;
- Department of Soil Ecology, Kazakh Research Institute of Soil Science and Agrochemistry named after U.U. Uspanov, Al-Farabi Ave. 75, Almaty 050060, Kazakhstan
| | - Serik Tursbekov
- Department of Mine Surveying and Geodesy, Institute Mining and Metallurgical Institute named after O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (S.T.); (E.A.)
| | - Elaman Abdalimov
- Department of Mine Surveying and Geodesy, Institute Mining and Metallurgical Institute named after O.A. Baikonurov, Satbayev University, Almaty 050043, Kazakhstan; (S.T.); (E.A.)
| | - Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (V.K.); (S.I.A.)
| | - Vladimir Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia;
| | - Vladimir Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (V.K.); (S.I.A.)
| | - Suleyman I. Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; (V.K.); (S.I.A.)
| |
Collapse
|
5
|
Peng JS, Zhang XJ, Xiong JN, Zhou Y, Wang WL, Chen SY, Zhang DW, Gu TY. Characterization of genes involved in micronutrients and toxic metals detoxification in Brassica napus by genome-wide cDNA library screening. Metallomics 2023; 15:mfad068. [PMID: 37989719 DOI: 10.1093/mtomcs/mfad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Stresses caused by deficiency/excess of mineral nutrients or of pollution of toxic metals have already become a primary factor in limiting crop production worldwide. Genes involved in minerals and toxic metals accumulation/tolerance could be potential candidates for improving crop plants with enhanced nutritional efficiency and environmental adaptability. In this study, we first generated a high-quality yeast expression cDNA library of Brassica napus (Westar), and 46 genes mediating excess micronutrients and toxic metals detoxification were screened using the yeast genetic complementation system, including 11, 5, 6, 14, 6, and 5 genes involved in cadmium (Cd), zinc (Zn), iron (Fe), manganese (Mn), boron (B), and copper (Cu) tolerance, respectively. Characterization of genes mediating excess ions stress resistance in this study is beneficial for us to further understand ions homeostasis in B. napus.
Collapse
Affiliation(s)
- Jia-Shi Peng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Xue-Jie Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Jia-Ni Xiong
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Ying Zhou
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Wei-Li Wang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, Guangdong, China
| | - Si-Ying Chen
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Da-Wei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Tian-Yu Gu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| |
Collapse
|
6
|
Mussali-Galante P, Santoyo-Martínez M, Castrejón-Godínez ML, Breton-Deval L, Rodríguez-Solis A, Valencia-Cuevas L, Tovar-Sánchez E. The bioaccumulation potential of heavy metals by Gliricidia sepium (Fabaceae) in mine tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38982-38999. [PMID: 36595178 DOI: 10.1007/s11356-022-24904-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
As a result of mining activities, waste of different types is generated. One example is mine tailings that contain potentially toxic elements such as heavy metals that negatively impact the environment and human health. Hence, developing treatments to guarantee its efficient elimination from the environment is necessary. Among these treatments, phytoremediation takes advantage of the potential of different plant species, to remove heavy metals from polluted sites. Gliricidia sepium is a tree that grows up to 15 m high and distributed from southern Mexico to Central America. This study evaluates the heavy metal bioaccumulation capacity in roots and leaves, and the effect of such bioaccumulation on fifteen macro- and one micro-morphological characters of G. sepium growing during 360 days in control, and in mine tailing substrates. G. sepium individuals growing on the exposed substrate registered the following average heavy metal bioaccumulation pattern in the roots: Fe > Pb > Zn > Cu, while in the leaf tissue, the bioaccumulation pattern was Cu > Fe > Pb > Zn. Macro- and micro-morphological characters evaluated in G. sepium decreased in plants exposed to metals. The translocation factor showed that Cu and Pb registered average values greater than 1. In conclusion, G. sepium is a species with potential for the phytoremediation of soils contaminated with Fe, Cu, and Pb, and for phytostabilizing soils polluted with Fe, Pb, Zn, and Cu, along with its ability to establish itself and turn into an abundant plant species in polluted sites, its capacity to bioaccumulate heavy metals in roots and leaves, and its high rate of HM translocation.
Collapse
Affiliation(s)
- Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, Mexico
| | - Miguel Santoyo-Martínez
- Doctorado en Ciencias Naturales, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, Mexico
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, Mexico
| | - Luz Breton-Deval
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad S/N, Col. Chamilpa, C.P. 62210. Cuernavaca, Morelos, Mexico
| | - Alexis Rodríguez-Solis
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, Mexico
| | - Leticia Valencia-Cuevas
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, Mexico
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, Mexico.
| |
Collapse
|
7
|
Li Y, Song Y, Zhang J, Wan Y. Phytoremediation Competence of Composite Heavy-Metal-Contaminated Sediments by Intercropping Myriophyllum spicatum L. with Two Species of Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3185. [PMID: 36833879 PMCID: PMC9960239 DOI: 10.3390/ijerph20043185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
A variety of remediation approaches have been applied to reduce the harm and diffusion of heavy metals in aquatic sediments; however, phytoremediation in co-contaminated soils is still not clear. In order to explore the phytoremediation of sediments contaminated by Cu and Pb, two submerged plants with different characteristics, Vallisneria natans and Hydrilla verticillata, were interplanted with Myriophyllum spicatum. By simulating a submerged plant ecological environment, medium-scale-simulated ecological remediation experiments were carried out. The results showed that the two planting patterns were effective in repairing the sediments in the Cu and Pb contaminated sediments. The intercropping of Myriophyllum spicatum and Vallisneria natans can be used as the plant stabilizer of Cu because of the TF > 1 and BCF < 1, and the intercropping with Hydrilla verticillata can regulate the enrichment efficiency of Myriophyllum spicatum. The removal rates of Cu and Pb in sediments reached 26.1% and 68.4%, respectively, under the two planting patterns. The risk grade of the restored sediments was RI < 150, indicating a low risk.
Collapse
Affiliation(s)
| | | | | | - Yingxin Wan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China
| |
Collapse
|
8
|
Quan L, Duan K, Wei Z, Li W, Chen Y, Duan W, Qin C, Shen Z, Xia Y. Beneficial effects of arbuscular mycorrhizae on Cu detoxification in Mimosa pudica L. grown in Cu-polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25755-25763. [PMID: 36348238 DOI: 10.1007/s11356-022-23919-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi are known to have beneficial effects on host plants growing on contaminated soils. The present study aimed at investigating the influence of two different AM fungi (Rhizophagus intraradices and Funneliformis mosseae) on the growth of plants and Cu uptake by Mimosa pudica L. grown in polluted soils containing various levels of Cu (Control, 400, 500, or 600 mg kg-l soil) in pot experiments. Mycorrhizal colonisation rates by the two AM fungi decreased markedly with the increasing Cu levels in soils. This inhibition was more pronounced to F. mosseae than R. intraradices, indicating that R. intraradices was more tolerant to Cu than F. mosseae. Compared with non-mycorrhizal plants, R. intraradices inoculation increased plant growth (including shoot height, numbers of compound leaves and leaflets, and dry biomass) and P concentrations in the shoots and roots of M. pudica at all levels of Cu. Meanwhile, F. mosseae displayed a capability of growth promotion to M. pudica much later and lower than R. intraradices. F. mosseae and R. intraradices markedly decreased Cu concentration in shoots at 400-600 mg kg-1 Cu levels. However, R. intraradices was more efficient than F. mosseae in decreasing the shoot Cu concentrations. As for the increasing Cu tolerance by R. intraradices, possibly it was reached though the improvement of phosphorus nutrition and the decline of Cu transport from roots to shoots of M. pudica. R. intraradices showed a good potential for improving medicinal plants growth and declining toxic effects in Cu-contaminated soils.
Collapse
Affiliation(s)
- Lingtong Quan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kun Duan
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Zhuangzhuang Wei
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Wenwei Li
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Yang Chen
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Weidong Duan
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, 450000, China
| | - Chun Qin
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Xia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Interaction between Boron and Other Elements in Plants. Genes (Basel) 2023; 14:genes14010130. [PMID: 36672871 PMCID: PMC9858995 DOI: 10.3390/genes14010130] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Boron (B) is an essential mineral nutrient for growth of plants, and B deficiency is now a worldwide problem that limits production of B deficiency-sensitive crops, such as rape and cotton. Agronomic practice has told that balanced B and other mineral nutrient fertilizer applications is helpful to promote crop yield. In recent years, much research has reported that applying B can also reduce the accumulation of toxic elements such as cadmium and aluminum in plants and alleviate their toxicity symptoms. Therefore, the relation between B and other elements has become an interesting issue for plant nutritionists. Here we summarize the research progress of the interaction between B and macronutrients such as nitrogen, phosphorus, calcium, potassium, magnesium, and sulfur, essential micronutrients such as iron, manganese, zinc, copper, and molybdenum, and beneficial elements such as sodium, selenium, and silicon. Moreover, the interaction between B and toxic elements such as cadmium and aluminum, which pose a serious threat to agriculture, is also discussed in this paper. Finally, the possible physiological mechanisms of the interaction between B and other elements in plants is reviewed. We propose that the cell wall is an important intermediary between interaction of B and other elements, and competitive inhibition of elements and related signal transduction pathways also play a role. Currently, research on the physiological role of B in plants mainly focuses on its involvement in the structure and function of cell walls, and our understanding of the details for interactions between B and other elements also tend to relate to the cell wall. However, we know little about the metabolic process of B inside cells, including its interactions with other elements. More research is needed to address the aforementioned research questions in future.
Collapse
|
10
|
Yin Z, Li R, Lin H, Chen Y, Wang Y, Zhao Y. Analysis of Influencing Factors of Cementitious Material Properties of Lead-Zinc Tailings Based on Orthogonal Tests. MATERIALS (BASEL, SWITZERLAND) 2022; 16:361. [PMID: 36614700 PMCID: PMC9822320 DOI: 10.3390/ma16010361] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
At present, the treatment of tailings is mostly carried out in the form of stacking in tailings ponds, resulting in a huge waste of mineral resources and a major threat to the environment and ecology. Using tailings instead of a part of the cement to make cementitious materials is an effective way to reduce the accumulation of tailings. In this paper, lead-zinc tailings-based cementitious materials were prepared by using lead-zinc tailings, fly ash, and ordinary Portland cement, and the effects of four factors on the mechanical properties of lead-zinc tailings, as well as fly ash content, cement content, and water-binder ratio were studied by orthogonal experiments. The corresponding relationship between the factors and the properties of cementitious materials was determined, and the optimization and prediction of the raw material ratio of lead-zinc tailings-based cementitious materials were realized. The test showed the ratio of raw materials to be at the lowest price ratio. Synchronously the ratio that meets the minimum strength requirements was predicted. When the proportion of fly ash:lead and zinc tailings:cement = 30:40:30 and the water-binder ratio was 0.4, the predicted compressive strength of the prepared cementitious material achieved 22.281 MPa, which meets the strength requirements, while the total content of lead-zinc tailings and fly ash was the highest at this time.
Collapse
Affiliation(s)
- Ziyi Yin
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China
| | - Rui Li
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China
| | - Hang Lin
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China
| | - Yifan Chen
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China
| | - Yixian Wang
- China School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yanlin Zhao
- School of Energy and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
11
|
Gan C, Liu Z, Pang B, Zuo D, Hou Y, Zhou L, Yu J, Chen L, Wang H, Gu L, Du X, Zhu B, Yi Y. Integrative physiological and transcriptome analyses provide insights into the Cadmium (Cd) tolerance of a Cd accumulator: Erigeron canadensis. BMC Genomics 2022; 23:778. [PMID: 36443662 PMCID: PMC9703714 DOI: 10.1186/s12864-022-09022-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Cadmium (Cd) is a highly toxic pollutant in soil and water that severely hampers the growth and reproduction of plants. Phytoremediation has been presented as a cost-effective and eco-friendly method for addressing heavy metal pollution. However, phytoremediation is restricted by the limited number of accumulators and the unknown mechanisms underlying heavy metal tolerance. In this study, we demonstrated that Erigeron canadensis (Asteraceae), with its strong adaptability, is tolerant to intense Cd stress (2 mmol/L CdCl2 solution). Moreover, E. canadensis exhibited a strong ability to accumulate Cd2+ when treated with CdCl2 solution. The activity of some antioxidant enzymes, as well as the malondialdehyde (MDA) level, was significantly increased when E. canadensis was treated with different CdCl2 solutions (0.5, 1, 2 mmol/L CdCl2). We found high levels of superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities under 1 mmol/L CdCl2 treatment. Comparative transcriptomic analysis identified 5,284 differentially expressed genes (DEGs) in the roots and 3,815 DEGs in the shoots after E. canadensis plants were exposed to 0.5 mM Cd. Functional annotation of key DEGs indicated that signal transduction, hormone response, and reactive oxygen species (ROS) metabolism responded significantly to Cd. In particular, the DEGs involved in auxin (IAA) and ethylene (ETH) signal transduction were overrepresented in shoots, indicating that these genes are mainly involved in regulating plant growth and thus likely responsible for the Cd tolerance. Overall, these results not only determined that E. canadensis can be used as a potential accumulator of Cd but also provided some clues regarding the mechanisms underlying heavy metal tolerance.
Collapse
Affiliation(s)
- Chenchen Gan
- grid.443395.c0000 0000 9546 5345School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Zhaochao Liu
- grid.443395.c0000 0000 9546 5345School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Biao Pang
- grid.443395.c0000 0000 9546 5345School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Dan Zuo
- grid.443395.c0000 0000 9546 5345School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Yunyan Hou
- grid.443395.c0000 0000 9546 5345School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Lizhou Zhou
- grid.443395.c0000 0000 9546 5345School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Jie Yu
- grid.443395.c0000 0000 9546 5345School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Li Chen
- grid.449845.00000 0004 1757 5011School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100 People’s Republic of China
| | - Hongcheng Wang
- grid.443395.c0000 0000 9546 5345School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Lei Gu
- grid.443395.c0000 0000 9546 5345School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Xuye Du
- grid.443395.c0000 0000 9546 5345School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Bin Zhu
- grid.443395.c0000 0000 9546 5345School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| | - Yin Yi
- grid.443395.c0000 0000 9546 5345School of Life Sciences, Guizhou Normal University, Guiyang, 550025 People’s Republic of China
| |
Collapse
|
12
|
Ievinsh G, Landorfa-Svalbe Z, Andersone-Ozola U, Karlsons A, Osvalde A. Salinity and Heavy Metal Tolerance, and Phytoextraction Potential of Ranunculus sceleratus Plants from a Sandy Coastal Beach. LIFE (BASEL, SWITZERLAND) 2022; 12:life12121959. [PMID: 36556324 PMCID: PMC9782882 DOI: 10.3390/life12121959] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to evaluate tolerance to salinity and different heavy metals as well as the phytoextraction potential of Ranunculus sceleratus plants from a brackish coastal sandy beach habitat. Four separate experiments were performed with R. sceleratus plants in controlled conditions: (1) the effect of NaCl gradient on growth and ion accumulation, (2) the effect of different Na+ and K+ salts on growth and ion accumulation, (3) heavy metal tolerance and metal accumulation potential, (4) the effect of different forms of Pb salts (nitrate and acetate) on plant growth and Pb accumulation. A negative effect of NaCl on plant biomass was evident at 0.5 g L-1 Na+ and growth was inhibited by 44% at 10 g L-1 Na+, and this was associated with changes in biomass allocation. The maximum Na+ accumulation (90.8 g kg-1) was found in the stems of plants treated with 10 g kg-1 Na+. The type of anion determined the salinity tolerance of R. sceleratus plants, as Na+ and K+ salts with an identical anion component had a comparable effect on plant growth: nitrates strongly stimulated plant growth, and chloride treatment resulted in slight but significant growth reduction, but plants treated with nitrites and carbonates died within 4 and 5 weeks after the full treatment, respectively. The shoot growth of R. sceleratus plants was relatively insensitive to treatment with Mn, Cd and Zn in the form of sulphate salts, but Pb nitrate increased it. Hyperaccumulation threshold concentration values in the leaves of R. sceleratus were reached for Cd, Pb and Zn. R. sceleratus can be characterized as a shoot accumulator of heavy metals and a hyperaccumulator of Na+. A relatively short life cycle together with a high biomass accumulation rate makes R. sceleratus useful for dynamic constructed wetland systems aiming for the purification of concentrated wastewaters.
Collapse
Affiliation(s)
- Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
- Correspondence:
| | - Zaiga Landorfa-Svalbe
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Andis Karlsons
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia
| | - Anita Osvalde
- Institute of Biology, University of Latvia, 4 Ojāra Vācieša Str., LV-1004 Rīga, Latvia
| |
Collapse
|
13
|
Dai H, Wei S, Grzebelus D, Skuza L, Jia J, Hou N. Mechanism exploration of Solanum nigrum L. hyperaccumulating Cd compared to Zn from the perspective of metabolic pathways based on differentially expressed proteins using iTRAQ. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129717. [PMID: 35961076 DOI: 10.1016/j.jhazmat.2022.129717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
It is challenging to determine the mechanism involved in only Cd hyperaccumulation by Solanum nigrum L. owing to the uniqueness of the process. Isobaric tags for relative and absolute quantitation (iTRAQ) were used to explore the mechanism by which S. nigrum hyperaccumulates Cd by comparing the differentially expressed proteins (DEPs) for Cd and Zn accumulation (non-Zn hyperaccumulator). Based on the comparison between the DEPs associated with Cd and Zn accumulation, the relative metabolic pathways reflected by 17 co-intersecting specific proteins associated with Cd and Zn accumulation included phagosome, aminoacyl-tRNA biosynthesis, and carbon metabolism. Apart from the 17 co-intersecting specific proteins, the conjoint metabolic pathways reported by 21 co-intersecting specific proteins associated with Cd accumulation and 30 co-intersecting specific proteins associated with Zn accumulation, the most differentially expressed metabolic pathways might cause Cd TF (Translocation factor)> 1 and Zn TF< 1, including protein export, ribosome, amino sugar, and nucleotide sugar metabolism. The determined DEPs were verified using qRT-PCR with the four key proteins M1CW30, A0A3Q7H652, A0A0V0IFB9, and A0A0V0IAC4. The plasma membrane H+-ATPase protein was identified using western blotting. Some physiological indices for protein-related differences indirectly confirmed the above results. These results are crucial to further explore the mechanisms involved in Cd hyperaccumulation.
Collapse
Affiliation(s)
- Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources And Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow 31-120, Poland
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin 71-415, Poland
| | - Jibao Jia
- School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Nan Hou
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources And Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
14
|
Chen L, Beiyuan J, Hu W, Zhang Z, Duan C, Cui Q, Zhu X, He H, Huang X, Fang L. Phytoremediation of potentially toxic elements (PTEs) contaminated soils using alfalfa (Medicago sativa L.): A comprehensive review. CHEMOSPHERE 2022; 293:133577. [PMID: 35016965 DOI: 10.1016/j.chemosphere.2022.133577] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination with potentially toxic elements (PTEs) is an increasing environmental problem, posing serious threats to the living organisms. Phytoremediation is a sustainable and highly accepted technology for remediation of PTE-contaminated soils. Alfalfa has been widely adopted for the phytoremediation of PTE-contaminated soils due to its large biomass productivity, high PTE tolerance, and strong capacity to take up PTEs. However, there are still no literature reviews systematically summarized the potential of alfalfa in the phytoremediation. Therefore, we review the available literatures that present its PTE uptake, phytotoxicity, tolerance mechanisms, and aided techniques improving the phytoremediation efficiency. In this review, alfalfa shows high amounts of PTEs accumulation, especially in their root tissue. Meanwhile, the inner mechanisms of PTE tolerance and accumulation in alfalfa are discussed including: (i) the activation of antioxidant enzyme system, (ii) subcellular localization, (iii) production of glutathione, phytochelatins, and proline, and (iv) regulation of gene expression. Indeed, excessive PTE can overcome the defense system, which causes oxidative damage in alfalfa plants, thereby inhibiting growth and physiological processes and weakening the ability of PTE uptake. Till now, several approaches have been developed to improve the tolerance and/or accumulation of PTE in alfalfa plants as follows: (i) selection of PTE tolerant cultivars, (ii) applying plant growth regulators, (iii) addition of chelating agents, fertilizer, and biochar materials, and (iv) inoculation of soil microbes. Finally, we indicate that the selection of PTE-tolerant cultivars along with inoculation of soil microbes may be an efficient and eco-friendly strategy of the soil PTE phytoremediation.
Collapse
Affiliation(s)
- Li Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Weifang Hu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China
| | - Zhiqing Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Chenjiao Duan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Qingliang Cui
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China
| | - Xiaozhen Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Xuguang Huang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China
| | - Linchuan Fang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation CAS and MWR, Yangling, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| |
Collapse
|
15
|
Application of the Stripping Voltammetry Method for the Determination of Copper and Lead Hyperaccumulation Potential in Lunaria annua L. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Various species of the Brassicaceae family are known to hyperaccumulate metals. Lunaria annua L., a plant from the Brassicaceae family, is an oilseed crop known for its pharmaceutical and nutraceutical applications. In this work, Lunaria annua L. was investigated for its accumulation potential in copper and lead-contaminated soil. Concentrations of copper and lead were measured before planting (in seeds and soils) and after the plant was harvested (in soils and plant). Two types of soils were used: a soil sample collected from the Botanical Garden of the Faculty of Science, University of Split (soil 1, S1) and a commercially available organic mineral substrate (soil 2, S2). Measured pH values showed that the S1 (pH = 8.58) was moderately alkaline soil. On the other hand, the purchased organic soil, S2 (pH = 6.35), was poorly acidic to neutral. For the determination of copper (Cu) and lead (Pb), square wave anodic stripping voltammetry (SWASV), using a glassy carbon electrode modified with mercury film, was applied. The concentrations of Pb and Cu were determined and calculated in the sample using the standard addition method. Obtained results have shown that Lunaria annua L. is a lead hyperaccumulator (4116.2 mg/kg in S1 and 3314.7 mg/kg in S2) and a potential copper accumulator (624.2 mg/kg in S1 and 498.9 mg/kg in S2). Likewise, the results have shown that the higher the pH is, the lower the possibility that metal accumulation exists.
Collapse
|
16
|
El-Shafey NM, Marzouk MA, Yasser MM, Shaban SA, Beemster GT, AbdElgawad H. Harnessing Endophytic Fungi for Enhancing Growth, Tolerance and Quality of Rose-Scented Geranium ( Pelargonium graveolens (L'Hér) Thunb.) Plants under Cadmium Stress: A Biochemical Study. J Fungi (Basel) 2021; 7:1039. [PMID: 34947021 PMCID: PMC8705862 DOI: 10.3390/jof7121039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 01/24/2023] Open
Abstract
Heavy metal contamination in soil is increasing rapidly due to increasing anthropogenic activities. Despite the importance of rose-scented geranium as a medicinal plant, little attention was paid to enhancing its productivity in heavy metal-polluted soil. In this regard, endophytes improve plant resistance to heavy metal toxicity and enhance its tissue quality. Here, the impact of the three endophytic fungi Talaromyces versatilis (E6651), Emericella nidulans (E6658), and Aspergillus niger (E6657) on geranium growth, tolerance, and tissue quality under cadmium (Cd) stress was investigated. In contrast to E. nidulans, T. versatilis and A. niger enhanced geranium growth and the stimulatory effect was more pronounced under Cd-stress. The three endophytes significantly alleviated Cd accumulation and increased mineral content in geranium leaves. In addition, endophytic fungi successfully alleviated Cd-induced membrane damage and reinforced the antioxidant defenses in geranium leaves. Inoculation with endophytes stimulated all the antioxidant enzymes under Cd-stress, and the response was more obvious in the case of T. versatilis and A. niger. To reduce the toxicity of tissue-Cd levels, T. versatilis and A. niger upregulated the detoxification mechanisms; glutathione-S-transferase, phytochelatin, and metallothionein levels. Moreover, endophytic fungi improved the medicinal value and quality of geranium by increasing total antioxidant capacity (TAC), phenolic compound biosynthesis (phenylalanine ammonia-lyase), and vitamin content as well as the quantity and quality of essential oil, particularly under Cd-stress conditions. The variation in the mechanisms modulated by the different endophytic fungi was supported by Principal Component Analysis (PCA). Overall, this study provided fundamental insights into endophytes' impact as a feasible strategy to mitigate the phytotoxicity hazards of Cd-stress in geranium and enhance its quality, based on the growth and biochemical investigations.
Collapse
Affiliation(s)
- Nadia Mohamed El-Shafey
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Marym A. Marzouk
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Manal M. Yasser
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Salwa A. Shaban
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| | - Gerrit T.S. Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt; (M.A.M.); (M.M.Y.); (S.A.S.); (H.A.)
| |
Collapse
|
17
|
Mohiley A, Tielbörger K, Weber M, Clemens S, Gruntman M. Competition for light induces metal accumulation in a metal hyperaccumulating plant. Oecologia 2021; 197:157-165. [PMID: 34370097 DOI: 10.1007/s00442-021-05001-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/16/2021] [Indexed: 11/25/2022]
Abstract
Plants can respond to competition with a myriad of physiological or morphological changes. Competition has also been shown to affect the foraging decisions of plants belowground. However, a completely unexplored idea is that competition might also affect plants' foraging for specific elements required to inhibit the growth of their competitors. In this study, we examined the effect of simulated competition on root foraging and accumulation of heavy metals in the metal hyperaccumulating perennial plant Arabidopsis halleri, whose metal accumulation has been shown to provide allelopathic ability. A. halleri plants originating from both metalliferous and non-metalliferous soils were grown in a "split-root" setup with one root in a high-metal pot and the other in a low-metal one. The plants were then assigned to either simulated light competition or no-competition (control) treatments, using vertical green or clear plastic filters, respectively. While simulated light competition did not induce greater root allocation into the high-metal pots, it did result in enhanced metal accumulation by A. halleri, particularly in the less metal-tolerant plants, originating from non-metalliferous soils. Interestingly, this accumulation response was particularly enhanced for zinc rather than cadmium. These results provide support to the idea that the accumulation of metals by hyperaccumulating plants can be facultative and change according to their demand following competition.
Collapse
Affiliation(s)
- Anubhav Mohiley
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Katja Tielbörger
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Michael Weber
- Plant Physiology Department, University of Bayreuth, Bayreuth, Germany
| | - Stephan Clemens
- Plant Physiology Department, University of Bayreuth, Bayreuth, Germany
| | - Michal Gruntman
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany.
- School of Plant Sciences and Food Security, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
18
|
Yung L, Blaudez D, Maurice N, Azou-Barré A, Sirguey C. Dark septate endophytes isolated from non-hyperaccumulator plants can increase phytoextraction of Cd and Zn by the hyperaccumulator Noccaea caerulescens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16544-16557. [PMID: 33387325 DOI: 10.1007/s11356-020-11793-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Dark septate endophytes (DSEs) can improve plant stress tolerance by promoting growth and affecting element accumulation. Due to its ability to accumulate high Cd, Zn, and Ni concentrations in its shoots, Noccaea caerulescens is considered a promising candidate for phytoextraction in the field. However, the ability of DSEs to improve trace element (TE) phytoextraction with N. caerulescens has not yet been studied. The aim of this study was therefore to determine the ability of five DSE strains, previously isolated from poplar roots collected at different TE-contaminated sites, to improve plant development, mineral nutrient status, and metal accumulation by N. caerulescens during a pot experiment using two soils differing in their level of TE contamination. Microscopic observations revealed that the tested DSE strains effectively colonised the roots of N. caerulescens. In the highly contaminated (HC) soil, a threefold increase in root biomass was found in plants inoculated with the Leptodontidium sp. Pr30 strain compared to that in the non-inoculated condition; however, the plant nutrient status was not affected. In contrast, the two strains Phialophora mustea Pr27 and Leptodontidium sp. Me07 had positive effects on the mineral nutrient status of plants without significantly modifying their biomass. Compared to non-inoculated plants cultivated on HC soil, Pr27- and Pr30-inoculated plants extracted more Zn (+ 30%) and Cd (+ 90%), respectively. In conclusion, we demonstrated that the responses of N. caerulescens to DSE inoculation ranged from neutral to beneficial and we identified two strains (i.e. Leptodontidium sp. (Pr30) and Phialophora mustea (Pr27)) isolated from poplar that appeared promising as they increased the amounts of Zn and Cd extracted by improving plant growth and/or TE accumulation by N. caerulescens. These results generate interest in further characterising the DSEs that naturally colonise N. caerulescens and testing their ability to improve phytoextraction.
Collapse
Affiliation(s)
- Loïc Yung
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | - Damien Blaudez
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | - Nicolas Maurice
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | - Antonin Azou-Barré
- Université de Lorraine, INRAE, LSE, F-54000, Nancy, France
- Université de Lorraine, CNRS, LIEC, F-54000, Nancy, France
| | | |
Collapse
|
19
|
Bech J. Special Issue on "Metallophytes for soil remediation" - Preface. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1319-1325. [PMID: 33683534 DOI: 10.1007/s10653-021-00852-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Jaume Bech
- University of Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Alekseenko VA, Shvydkaya NV, Alekseenko AV, Machevariani MM, Bech J, Pashkevich MA, Puzanov AV, Nastavkin AV, Roca N. Element Accumulation Patterns of Native Plant Species under the Natural Geochemical Stress. PLANTS (BASEL, SWITZERLAND) 2020; 10:plants10010033. [PMID: 33375579 PMCID: PMC7824280 DOI: 10.3390/plants10010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/12/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
A biogeochemical study of more than 20,000 soil and plant samples from the North Caucasus, Dzungarian Alatau, Kazakh Uplands, and Karatau Mountains revealed features of the chemical element uptake by the local flora. Adaptation of ore prospecting techniques alongside environmental approaches allowed the detection of geochemical changes in ecosystems, and the lessons learned can be embraced for soil phytoremediation. The data on the influence of phytogeochemical stress on the accumulation of more than 20 chemical elements by plants are considered in geochemical provinces, secondary fields of deposits, halos surrounding ore and nonmetallic deposits, zones of regional faults and schist formation, and over lithological contact lines of chemically contrasting rocks overlain by 5-20 m thick soils and unconsolidated cover. We have corroborated the postulate that the element accumulation patterns of native plants under the natural geochemical stress depend not only on the element content in soils and the characteristics of a particular species but also on the values of ionic radii and valences; with an increase in the energy coefficients of a chemical element, its plant accumulation decreases sharply. The contribution of internal factors to element uptake from solutions gives the way to soil phytoremediation over vast contaminated areas. The use of hyperaccumulating species for mining site soil treatment depends on several external factors that can strengthen or weaken the stressful situation, viz., the amount of bedrock exposure and thickness of unconsolidated rocks over ores, the chemical composition of ores and primary halos in ore-containing strata, the landscape and geochemical features of sites, and chemical element migration patterns in the supergene zone.
Collapse
Affiliation(s)
- Vladimir A. Alekseenko
- Institute of Earth Sciences, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.A.A.); (A.V.N.)
| | - Natalya V. Shvydkaya
- Department of Botany and General Ecology, Kuban State Agrarian University, Krasnodar, 350004 Krasnodar Krai, Russia;
| | - Alexey V. Alekseenko
- Department of Geoecology, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia;
| | - Maria M. Machevariani
- Department of Mineralogy, Crystallography, and Petrography, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia;
| | - Jaume Bech
- Faculty of Biology, University of Barcelona, 08002 Barcelona, Spain; (J.B.); (N.R.)
| | - Mariya A. Pashkevich
- Department of Geoecology, Saint Petersburg Mining University, 199106 Saint Petersburg, Russia;
| | | | - Aleksey V. Nastavkin
- Institute of Earth Sciences, Southern Federal University, 344006 Rostov-on-Don, Russia; (V.A.A.); (A.V.N.)
| | - Núria Roca
- Faculty of Biology, University of Barcelona, 08002 Barcelona, Spain; (J.B.); (N.R.)
| |
Collapse
|