1
|
Shi H, Du Y, Li Y, Deng Y, Tao Y, Ma T. Determination of high-risk factors and related spatially influencing variables of heavy metals in groundwater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120853. [PMID: 38608578 DOI: 10.1016/j.jenvman.2024.120853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Identifying high-risk factors (heavy metals (HMs) and pollution sources) by coupling receptor models and health risk assessment model (HRA) is a novel approach within the field of risk assessment. However, this coupled model ignores the contribution of spatial differentiation to high-risk factors, resulting in the assessment being subjective. Taking Dongting Plain (DTP) as an example, a coupling framework by jointly using the positive matrix factorization model (PMF), HRA, Monte Carlo simulation, and geo-detector was developed, aiming to identify high-risk factors in groundwater, and further explore key environmental variables influencing the spatial heterogeneity of high-risk factors. The results showed that at least 82.86 % of non-carcinogenic risks and 97.41 % of carcinogenic risks were unacceptable for people of all ages, especially infants and children. According to the relationships among HMs, pollution sources, and health risks, As and natural sources were defined as high-risk HMs and sources, respectively. The interactions among Holocene thickness, oxidation-reduction potential, and dissolved organic carbon emerged as the primary drivers of spatial variability in high-risk factors, with their combined explanatory power reaching up to 74%. This proposed framework provides a scientific reference for future studies and a practical reference for environmental authorities in developing effective pollution management measures.
Collapse
Affiliation(s)
- Huanhuan Shi
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Yao Du
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China.
| | - Yueping Li
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Yamin Deng
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Yanqiu Tao
- MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan, 430078, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China
| | - Teng Ma
- College of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
| |
Collapse
|
2
|
Li Y, Zhou Z, Zhang N. Fractional derivative method for anomalous aquitard flow in a leaky aquifer system with depth-decaying aquitard hydraulic conductivity. WATER RESEARCH 2024; 249:120957. [PMID: 38070345 DOI: 10.1016/j.watres.2023.120957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/19/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Aquitards significantly affect groundwater flow in multi-aquifer systems through adjacent aquifer leakage. Despite this, studies focusing on their heterogeneity and the non-conventional diffusion patterns of their flow are still limited. In this study, a factional derivative approach was first extended to explore the time-dependent behavior of flow transport in the aquitard. Two analytical solutions were derived for specific discharges in independent aquitards under different boundary conditions. The findings revealed that aquitard flow exhibits obvious anomalous diffusion behaviors, characterized by slower decay and heavy-tailed specific discharge data. The fractional derivative model provided a more accurate representation of this behavior than traditional models, as evidenced by its superior agreement with experimental data. Moreover, a transient model for pumping tests in a leaky aquifer system was developed, incorporating the memory effect of anomalous flow and vertical heterogeneity in aquitards. Relevant semi-analytical solutions were derived to explore the impacts of memory factor β and decay exponent of aquitard hydraulic conductivity (K) on the leakage aquifer system. Theoretical results demonstrated that stronger memory effect reduces drawdowns in the aquitard and confined aquifer during mid-to-late times. A larger dimensionless decay exponent (Ad) decreases aquitard drawdown and increases aquifer drawdown at late times. Sensitivity analysis showed aquitard drawdown experiences two peaks in sensitivity to β and Ad at early- or mid-times, affected by memory effect and decay exponent of aquitard K, signifying maximal impact at these specific intervals. This study provides a practical model to effectively manage groundwater resources by accurately reflecting aquitard memory and heterogeneity effects.
Collapse
Affiliation(s)
- Yabing Li
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Zhifang Zhou
- School of Earth Sciences and Engineering, Hohai University, No. 8 Fochengxi Road, Nanjing, Jiangsu Province 211100, China
| | - Ning Zhang
- School of Civil Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| |
Collapse
|
3
|
Song D, Jiang Z, Ma T, Dong Y, Shi L. Bacterial and Archaeal Diversity and Abundance in Shallow Subsurface Clay Sediments at Jianghan Plain, China. Front Microbiol 2020; 11:572560. [PMID: 33193171 PMCID: PMC7642157 DOI: 10.3389/fmicb.2020.572560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Clay layers are common in subsurface where microbial activities play an important role in impacting the biogeochemical properties of adjacent aquifers. In this study, we analyzed the community structure and abundance of bacteria and archaea in response to geochemical properties of six clay sediments at different depths in a borehole (112°34'0″E, 30°36'21″N) of Jianghan Plain (JHP), China. Our results suggested that the top two clay layers were oxic, while the remaining bottom four clay layers were anoxic. Both high-throughput sequencing and qPCR of 16S rRNA gene showed relatively high abundance of archaea (up to 60%) in three of the anoxic clay layers. Furthermore, microbial communities in these clay sediments showed distinct vertical stratification, which may be impacted by changes in concentrations of sulfate, HCl-extractable Fe2+ and total organic carbon (TOC) in the sediments. In the upper two oxic clay layers, identification of phyla Thaumarchaeota (11.2%) and Nitrosporales (1.2%) implied nitrification in these layers. In the two anoxic clay layers beneath the oxic zone, high abundances of Anaeromyxobacter, Chloroflexi bacterium RBG 16_58_14 and Deltaproteobacteria, suggested the reductions of nitrate, iron and sulfate. Remarkably, a significant portion of Bathyarchaeota (∼25%) inhabited in the bottom two anoxic clay layers, which may indicate archaeal anaerobic degradation of TOC by these organisms. The results of this study provide the first systematic understandings of microbial activities in subsurface clay layers at JHP, which may help develop microorganism-based solutions for mitigating subsurface contaminations.
Collapse
Affiliation(s)
- Dandan Song
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, Wuhan, China
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|