1
|
Zhang C, Shi D, Wang C, Sun G, Li H, Hu Y, Li X, Hou Y, Zheng R. Pristine/magnesium-loaded biochar and ZVI affect rice grain arsenic speciation and cadmium accumulation through different pathways in an alkaline paddy soil. J Environ Sci (China) 2025; 147:630-641. [PMID: 39003078 DOI: 10.1016/j.jes.2023.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/15/2024]
Abstract
Cadmium (Cd) and arsenic (As) co-contamination has threatened rice production and food safety. It is challenging to mitigate Cd and As contamination in rice simultaneously due to their opposite geochemical behaviors. Mg-loaded biochar with outstanding adsorption capacity for As and Cd was used for the first time to remediate Cd/As contaminated paddy soils. In addition, the effect of zero-valent iron (ZVI) on grain As speciation accumulation in alkaline paddy soils was first investigated. The effect of rice straw biochar (SC), magnesium-loaded rice straw biochar (Mg/SC), and ZVI on concentrations of Cd and As speciation in soil porewater and their accumulation in rice tissues was investigated in a pot experiment. Addition of SC, Mg/SC and ZVI to soil reduced Cd concentrations in rice grain by 46.1%, 90.3% and 100%, and inorganic As (iAs) by 35.4%, 33.1% and 29.1%, respectively, and reduced Cd concentrations in porewater by 74.3%, 96.5% and 96.2%, respectively. Reductions of 51.6% and 87.7% in porewater iAs concentrations were observed with Mg/SC and ZVI amendments, but not with SC. Dimethylarsinic acid (DMA) concentrations in porewater and grain increased by a factor of 4.9 and 3.3, respectively, with ZVI amendment. The three amendments affected grain concentrations of iAs, DMA and Cd mainly by modulating their translocation within plant and the levels of As(III), silicon, dissolved organic carbon, iron or Cd in porewater. All three amendments (SC, Mg/SC and ZVI) have the potential to simultaneously mitigate Cd and iAs accumulation in rice grain, although the pathways are different.
Collapse
Affiliation(s)
- Chen Zhang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Dong Shi
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chao Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Guoxin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yanxia Hu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaona Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanhui Hou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ruilun Zheng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
2
|
Mlangeni AT, Chinthenga E, Kapito NJ, Namaumbo S, Feldmann J, Raab A. Safety of African grown rice: Comparative review of As, Cd, and Pb contamination in African rice and paddy fields. Heliyon 2023; 9:e18314. [PMID: 37519744 PMCID: PMC10375803 DOI: 10.1016/j.heliyon.2023.e18314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
This review aimed to investigate the reported concentrations of arsenic (As), cadmium (Cd), and lead (Pb) in rice cultivated in Africa and African rice paddies compared to other regions. It also aimed to explore the factors influencing these concentrations and evaluate the associated health risks of elevated As, Cd, and Pb exposure. Relevant data were obtained from electronic databases such as PubMed, Scopus, and Google Scholar using specific keywords related to arsenic, cadmium, lead, rice, Africa, paddy, and grain. While the number of studies reporting the concentrations of As, Cd, and Pb in rice and rice paddies in Africa is relatively low compared to other regions, this review revealed that most of the African rice and paddy soils have low concentrations of these metals. However, some studies have reported elevated concentrations of As, Cd, and Pb in paddy fields, which is concerning due to the increased use of agrochemicals containing heavy metals in rice production. Nonetheless, agronomical interventions such as implementing alternate wetting and drying water management, cultivating cultivars with low accumulation of As, Cd, and Pb, amending rice fields with sorbents, and screening irrigation water can limit the bioaccumulation of these carcinogens in paddy fields using phytoremediation techniques. Therefore, we strongly urge African governments and organizations operating in Africa to enhance the capacity of rice farmers and extension officers in adopting approaches and practices that reduce the accumulation of these carcinogenic metals in rice. This is essential to achieve the sustainable development goal of providing safe food for all.
Collapse
Affiliation(s)
- Angstone Thembachako Mlangeni
- Department of Land and Water Resources, Natural Resources College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Evans Chinthenga
- Department of Land and Water Resources, Natural Resources College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Noel Jabesi Kapito
- Department of Land and Water Resources, Natural Resources College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Sydney Namaumbo
- Department of Land and Water Resources, Natural Resources College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Joerg Feldmann
- TESLA Analytical Chemistry, Institute of Chemistry, University of Graz, Austria
| | - Andrea Raab
- TESLA Analytical Chemistry, Institute of Chemistry, University of Graz, Austria
| |
Collapse
|
3
|
Romero-Estévez D, Yánez-Jácome GS, Navarrete H. Non-essential metal contamination in Ecuadorian agricultural production: A critical review. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Planer-Friedrich B, Kerl CF, Colina Blanco AE, Clemens S. Dimethylated Thioarsenates: A Potentially Dangerous Blind Spot in Current Worldwide Regulatory Limits for Arsenic in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9610-9618. [PMID: 35901520 DOI: 10.1021/acs.jafc.2c02425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Arsenic (As) occurrence in rice is a serious human health threat. Worldwide, regulations typically limit only carcinogenic inorganic As, but not possibly carcinogenic dimethylated oxyarsenate (DMA). However, there is emerging evidence that "DMA", determined by routine acid-based extraction and analysis, hides a substantial share of dimethylated thioarsenates that have similar or higher cytotoxicities than arsenite. Risk assessments characterizing the in vivo toxicity of rice-derived dimethylated thioarsenates are urgently needed. In the meantime, either more sophisticated methods based on enzymatic extraction and separation of dimethylated oxy- and thioarsenates have to become mandatory or total As should be regulated.
Collapse
Affiliation(s)
- Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Carolin F Kerl
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Andrea E Colina Blanco
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Stephan Clemens
- Plant Physiology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| |
Collapse
|
5
|
Moulick D, Samanta S, Sarkar S, Mukherjee A, Pattnaik BK, Saha S, Awasthi JP, Bhowmick S, Ghosh D, Samal AC, Mahanta S, Mazumder MK, Choudhury S, Bramhachari K, Biswas JK, Santra SC. Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149477. [PMID: 34426348 DOI: 10.1016/j.scitotenv.2021.149477] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination and its adverse consequences on rice agroecosystem are well known. Rice has the credit to feed more than 50% of the world population but concurrently, rice accumulates a substantial amount of As, thereby compromising food security. The gravity of the situation lays in the fact that the population in theAs uncontaminated areas may be accidentally exposed to toxic levels of As from rice consumption. In this review, we are trying to summarize the documents on the impact of As contamination and phytotoxicity in past two decades. The unique feature of this attempt is wide spectrum coverages of topics, and that makes it truly an interdisciplinary review. Aprat from the behaviour of As in rice field soil, we have documented the cellular and molecular response of rice plant upon exposure to As. The potential of various mitigation strategies with particular emphasis on using biochar, seed priming technology, irrigation management, transgenic variety development and other agronomic methods have been critically explored. The review attempts to give a comprehensive and multidiciplinary insight into the behaviour of As in Paddy -Water - Soil - Plate prospective from molecular to post-harvest phase. From the comprehensive literature review, we may conclude that considerable emphasis on rice grain, nutritional and anti-nutritional components, and grain quality traits under arsenic stress condition is yet to be given. Besides these, some emerging mitigation options like seed priming technology, adoption of nanotechnological strategies, applications of biochar should be fortified in large scale without interfering with the proper use of biodiversity.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Suman Samanta
- Division of Agricultural Physics, Indian Agricultural Research Institute, Pusa, New Delhi 110012, India.
| | - Sukamal Sarkar
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Arkabanee Mukherjee
- Indian Institute of Tropical Meteorology, Dr Homi Bhabha Rd, Panchawati, Pashan, Pune, Maharashtra 411008, India.
| | - Binaya Kumar Pattnaik
- Symbiosis Institute of Geoinformatics, Symbiosis International (Deemed University), Pune, Maharashtra, India.
| | - Saikat Saha
- Nadia Krishi Vigyan Kendra, Bidhan Chandra Krishi Viswavidyalaya, Gayeshpur, Nadia 741234, West Bengal, India.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India.
| | - Dibakar Ghosh
- Division of Agronomy, ICAR-Indian Institute of Water Management, Bhubaneswar 751023, Odisha, India.
| | - Alok Chandra Samal
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| | - Subrata Mahanta
- Department of Chemistry, NIT Jamshedpur, Adityapur, Jamshedpur, Jharkhand 831014, India.
| | | | - Shuvasish Choudhury
- Plant Stress Biology and Metabolomics Laboratory Central Instrumentation Laboratory (CIL), Assam University, Silchar 788 011, India.
| | - Koushik Bramhachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia 741252, West Bengal, India.
| | - Jayanta Kumar Biswas
- Department of Ecological Studies and International Centre for Ecological Engineering, University of Kalyani, Kalyani, West Bengal, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India.
| |
Collapse
|
6
|
Mulloyarova VV, Puzyk AM, Efimova AA, Antonov AS, Evarestov RA, Aliyarova IS, Asfin RE, Tolstoy PM. Solid-state and solution-state self-association of dimethylarsinic acid: IR, NMR and theoretical study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Effect of Soil Characteristics on Arsenic Accumulation in Phytolith of Gramineae (Phragmites japonica) and Fern (Thelypteris palustris) Near the Gilgok Gold Mine. SUSTAINABILITY 2021. [DOI: 10.3390/su13063421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In South Korea, most metal mines were abandoned and caused contamination for more than 30 years. Even the soil is highly contaminated with trace elements, plants still grow in the area and can affect the contamination. Phytolith is amorphous silica in the plant body. Phytolith is resistant to decomposition, and the stabilization of carbon, nutrients, and toxic substances accumulated in the phytolith is being studied. In this study, the Gilgok gold mine, which is contaminated with arsenic was selected as the research site. We selected Phragmites japonica and Thelypteris palustris as targets for the analysis of arsenic accumulation in plants and phytolith. Plants accumulate more phytolith at the riverside. The higher water content of soil increased the Arsenic (As) concentration in the frond of the T. palustris. Soil available silicon (Si) did not affect phytolith accumulation but increased As accumulation in the plant and phytolith. The research result showed that P. japonica and T. palustris have the ability to accumulate As in phytolith and the accumulation can be changed with soil characteristics and plant species. This As accumulation in phytolith can affect plant tolerance in contaminated areas and change the As availability in the soil. The result of the research can be used as a database to build a sustainable environment.
Collapse
|
8
|
Reactive Oxygen Species (ROS) Metabolism and Nitric Oxide (NO) Content in Roots and Shoots of Rice (Oryza sativa L.) Plants under Arsenic-Induced Stress. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10071014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Arsenic (As) is a highly toxic metalloid for all forms of life including plants. Rice is the main food source for different countries worldwide, although it can take up high amounts of As in comparison with other crops, showing toxic profiles such as decreases in plant growth and yield. The induction of oxidative stress is the main process underlying arsenic toxicity in plants, including rice, due to an alteration of the reactive oxygen species (ROS) metabolism. The aim of this work was to gain better knowledge on how the ROS metabolism and its interaction with nitric oxide (NO) operate under As stress conditions in rice plants. Thus, physiological and ROS-related biochemical parameters in roots and shoots from rice (Oryza sativa L.) were studied under 50 μM arsenate (AsV) stress, and the involvement of the main antioxidative systems and NO in the response of plants to those conditions was investigated. A decrease of 51% in root length and 27% in plant biomass was observed with 50 μM AsV treatment, as compared to control plants. The results of the activity of superoxide dismutase (SOD) isozymes, catalase, peroxidase (POD: total and isoenzymatic), and the enzymes of the ascorbate–glutathione cycle, besides the ascorbate and glutathione contents, showed that As accumulation provoked an overall significant increase of most of them, but with different profiles depending on the plant organ, either root or shoot. Among the seven identified POD isozymes, the induction of the POD-3 in shoots under As stress could help to maintain the hydrogen peroxide (H2O2) redox homeostasis and compensate the loss of the ascorbate peroxidase (APX) activity in both roots and shoots. Lipid peroxidation was slightly increased in roots and shoots from As-treated plants. The H2O2 and NO contents were enhanced in roots and shoots against arsenic stress. In spite of the increase of most antioxidative systems, a mild oxidative stress situation appears to be consolidated overall, since the growth parameters and those from the oxidative damage could not be totally counteracted. In these conditions, the higher levels of H2O2 and NO suggest that signaling events are simultaneously occurring in the whole plant.
Collapse
|