1
|
Ayala Cabana L, de Santiago-Martín A, Meffe R, López-Heras I, de Bustamante I. Pharmaceutical and Trace Metal Interaction within the Water-Soil-Plant Continuum: Implications for Human and Soil Health. TOXICS 2024; 12:457. [PMID: 39058109 PMCID: PMC11281246 DOI: 10.3390/toxics12070457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Unplanned water reuse for crop irrigation may pose a global health risk due to the entry of contaminants into the food chain, undesirable effects on crop quality, and impact on soil health. In this study, we evaluate the impact derived from the co-occurrence of pharmaceuticals (Phs), trace metals (TMs), and one metalloid within the water-soil-plant continuum through bioassay experiments with Lactuca sativa L. Results indicate that the co-occurrence of Phs and TMs has synergistic or antagonistic effects, depending on target contaminants and environmental compartments. Complex formations between drugs and TMs may be responsible for enhanced sorption onto the soil of several Phs and TMs. Concerning plant uptake, the co-occurrence of Phs and TMs exerts antagonistic and synergistic effects on carbamazepine and diazepam, respectively. With the exception of Cd, drugs exert an antagonistic effect on TMs, negatively affecting their uptake and translocation. Drug contents in lettuce edible parts do not pose any threat to human health, but Cd levels exceed the maximum limits set for leafy vegetable foodstuffs. Under Ph-TM conditions, lettuce biomass decreases, and a nutrient imbalance is observed. Soil enzyme activity is stimulated under Ph-TM conditions (β-galactosidase) and Ph and Ph-TM conditions (urease and arylsulfatase), or it is not affected (phosphatase).
Collapse
Affiliation(s)
- Lesly Ayala Cabana
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
- Department of Geology, Geography and Environment, University of Alcalá, Alcalá de Henares, 28802 Madrid, Spain
| | - Ana de Santiago-Martín
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
| | - Raffaella Meffe
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
| | - Isabel López-Heras
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
| | - Irene de Bustamante
- IMDEA Water Institute, Alcalá de Henares, 28805 Madrid, Spain; (A.d.S.-M.); (R.M.); (I.L.-H.); (I.d.B.)
- Department of Geology, Geography and Environment, University of Alcalá, Alcalá de Henares, 28802 Madrid, Spain
| |
Collapse
|
2
|
Zhang Y, Liu Y, Lai X, Cao S, Yang Y, Yan B, Bai L, Tong L, He W. Transport mechanism and control technology of heavy metal ions in gangue backfill materials in short-wall block backfill mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165139. [PMID: 37379916 DOI: 10.1016/j.scitotenv.2023.165139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Short-wall block backfill mining can effectively control the movement of overlying strata, prevent water loss and utilize waste gangue materials. However, heavy metal ions (HMI) of gangue backfill materials in the mined-out area can be released and transported to the underlying aquifer, causing pollution of water resources in the mine. Accordingly, with short-wall block backfill mining technology, this study analyzed the sensitivity of gangue backfill materials to the environment. The pollution mechanism of gangue backfill materials to water resources was revealed, and the transport rules of HMI were explored. The regulation and control methods of water pollution in the mine were then concluded. The design method of backfill ratio for comprehensive protection of overlying and underlying aquifers was proposed. The results show that the release concentration of HMI, the gangue particle size, the floor lithology, the burial depth of the coal seam, and the depth of the floor fractures were the main factors that affected the transport behaviors of HMI. After long-term immersion, HMI of gangue backfill materials underwent hydrolysis and were released constantly. HMI were subjected to the coupled action of seepage, concentration, and stress and then driven by water head pressure and gravitational potential energy to transported downward along the pore and fracture channels in the floor with mine water as the carrier. Meanwhile, the transport distance of HMI increased with increasing release concentration of HMI, the permeability of the floor stratum, and the depth of floor fractures. Still, it decreased with increasing gangue particle size and the burial depth of the coal seam. On that basis, external-internal cooperative control methods were proposed to prevent the pollution of gangue backfill materials to mine water. Furthermore, the design method of the backfill ratio for comprehensive protection of overlying and underlying aquifers was proposed.
Collapse
Affiliation(s)
- Yun Zhang
- College of Energy Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Yongzi Liu
- College of Energy Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xingping Lai
- College of Energy Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Shenggen Cao
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou, Jiangsu 221116, China
| | - Yanbin Yang
- College of Energy Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Baoxu Yan
- College of Energy Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Licheng Bai
- College of Energy Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Liang Tong
- College of Energy Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Wei He
- College of Energy Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| |
Collapse
|
3
|
Burachevskaya M, Minkina T, Bauer T, Lobzenko I, Fedorenko A, Mazarji M, Sushkova S, Mandzhieva S, Nazarenko A, Butova V, Wong MH, Rajput VD. Fabrication of biochar derived from different types of feedstocks as an efficient adsorbent for soil heavy metal removal. Sci Rep 2023; 13:2020. [PMID: 36737633 PMCID: PMC9898244 DOI: 10.1038/s41598-023-27638-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023] Open
Abstract
For effective soil remediation, it is vital to apply environmentally friendly and cost-effective technologies following the notion of green sustainable development. In the context of recycling waste and preserving nutrients in the soil, biochar production and utilization have become widespread. There is an urgent need to develop high-efficiency biochar-based sorbents for pollution removal from soil. This research examined the efficacy of soil remediation using biochar made from three distinct sources: wood, and agricultural residues (sunflower and rice husks). The generated biochars were characterized by SEM/SCEM, XRF, XRD, FTIR, BET Specific Surface Area, and elemental compositions. The presence of hydroxyl and phenolic functional groups and esters in wood, sunflower and rice husk biochar were noted. The total volume of pores was in the following descending order: rice husk > wood > sunflower husk. However, wood biochar had more thermally stable, heterogeneous, irregular-shaped pores than other samples. Adsorption of soil-heavy metals into biochars differed depending on the type of adsorbent, according to data derived from distribution coefficients, sorption degree, Freundlich, and Langmuir adsorption models. The input of biochars to Calcaric Fluvic Arenosol increased its adsorption ability under contamination by Cu(II), Zn(II), and Pb(II) in the following order: wood > rice husk > sunflower husk. The addition of sunflower husk, wood, and rice husk biochar to the soil led to an increase in the removal efficiency of metals in all cases (more than 77%). The increase in the percentage adsorption of Cu and Pb was 9-19%, of Zn was 11-21%. The present results indicated that all biochars functioned well as an absorbent for removing heavy metals from soils. The tailor-made surface chemistry properties and the high sorption efficiency of the biochar from sunflower and rice husks could potentially be used for soil remediation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alexander Nazarenko
- The Southern Scientific Centre, Russian Academy of Sciences, Rostov-on-Don, Russia
| | - Vera Butova
- Southern Federal University, Rostov-on-Don, Russia
| | - Ming Hung Wong
- Consortium On Health, Environment, Education, and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | | |
Collapse
|
4
|
Jiang P, Zhou G, Li C, Yu Y, Zhou L, Kang H. Performance and mechanism of GO removal by gypsum from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47052-47064. [PMID: 36732452 DOI: 10.1007/s11356-023-25473-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
The widespread production and application of graphene oxide (GO) may lead to its dispersion throughout natural water systems, with potential negative effects on living organisms and the ecological environment. This study used gypsum (G) as an adsorbent and examined different conditions (pH, adsorbent dosage, GO initial concentration) for the removal effect of GO by G. The results showed the best adsorption effect for a solution pH of 8.0, gypsum dosage of 60 mg, initial GO concentration of 80 mg·L-1, and temperature of 303 K; at this time, the maximum removal rate of graphene oxide by gypsum was 93.3%. It could be obtained by isotherm and thermodynamic analysis that the GO adsorption by gypsum conforms to the Langmuir isotherm model, it does not easily occur in high-temperature environments, and is a spontaneous exothermic process. In addition, experiments such as SEM, AFM, TGA, XRD, XPS, FTIR, Raman, and Zeta were used to adsorb graphene oxide by gypsum composites (G/GO), through which the mineral interactions with graphene oxides were microscopically characterized. The impact on the adsorption properties of contaminants provides new insights into contaminant removal by gypsum.
Collapse
Affiliation(s)
- Ping Jiang
- School of Civil Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Guanzhong Zhou
- School of Civil Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Cuihong Li
- School of Civil Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Yanfei Yu
- School of Civil Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Lin Zhou
- School of Civil Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang, China
| | - Haibo Kang
- School of Civil Engineering, College of Transportation Science & Engineering, Nanjing Tech University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Study on Properties of Copper-Contaminated Soil Solidified by Solid Waste System Combined with Cement. SUSTAINABILITY 2022. [DOI: 10.3390/su14095604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Three industrial solid wastes including red mud, carbide slag, and phosphogypsum combined with ordinary Portland cement were used as curing agents to solidify/stabilize loess polluted by a high concentration of copper ions. The unconfined compressive strength, resistivity, permeability coefficient, copper ion leaching concentration, pH value, and other engineering application evaluation indexes were analyzed to preliminarily assess the applicability of the curing agent in the remediation of soil contaminated with a high concentration of copper ions. The mineral phases and functional groups of solidified soil were detected using XRD and FTIR, showing that the strength, electrical resistivity, and pH value of solidified soil decrease following the addition of copper ions. Moreover, the strength and resistivity of solidified soil increase with the curing age, and the pH value decreases with age. For solidified contaminated soil, when the total content of curing agent increases from 10 to 20%, the maximum 28 d strength increases from 1.35 to 5.43 MPa, and in this study, its permeability coefficient, copper ion leaching concentration, and pH value were found to be within the limits set by relevant national standards. In conclusion, red mud-carbide slag-phosphogypsum combined with cement has a good stabilizing effect on sites polluted with a high concentration of copper ions.
Collapse
|
6
|
Zamulina IV, Gorovtsov AV, Minkina TM, Mandzhieva SS, Burachevskaya MV, Bauer TV. Soil organic matter and biological activity under long-term contamination with copper. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:387-398. [PMID: 34319461 DOI: 10.1007/s10653-021-01044-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Organic matter (OM) and enzymes activity can act as indicators of the time and level of soil contamination with heavy metal. The goal of this study is evaluation of the effect of chronic long-term soil contamination with Cu on OM and biological activity in Spolic Technosols. The monitoring plot is located in the zone of industrial wastewater storage and sludge reservoirs in the Seversky Donets River flood plain. The total amount of Cu in the investigated soils varied greatly from 52 to 437 mg/kg. The results of Cu sequential fractionation the contaminated soil have shown that the chemical fraction composition of metal changed when the soil contamination level increased. The amount of Cu compounds associated with OM and Fe and Mn oxides was also higher. Fractions of OM from the humic and fulvic acids groups were studied. Soil was subjected to extraction with cold and hot water, and the content of water-soluble OM (WSOM) was determined. An increased solubility of humic and fulvic acids as well as elevated content of cold and hot extraction WSOM was established. The cold-extracted amount of WSOM increased with an enhance in the Cu content. The long-term contamination of soil with Cu leads to an adaptation of microorganisms to this adverse environmental factor, and this adaptation is manifested in the WSOM content increase. The effect of Cu contamination on microbiological activity was assessed by plate-counting culturable microorganisms and determining urease and dehydrogenase enzymatic activity. A high level of soil contamination with Cu showed a noticeable negative effect on the number of soil bacteria; however, active and potentially active bacteria were observed even in the highly contaminated soils. The changes in soil OM and microbial communities caused by Cu pollution can lead to disruption of ecosystem functioning.
Collapse
Affiliation(s)
- Inna V Zamulina
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090.
| | | | - Tatiana M Minkina
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| | | | | | - Tatiana V Bauer
- Southern Federal University, Rostov-on-Don, Russian Federation, 344090
| |
Collapse
|
7
|
Bech J. Soil contamination and human health: recent contributions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:295-300. [PMID: 34417674 DOI: 10.1007/s10653-021-01075-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Jaume Bech
- Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|