1
|
Rugji J, Erol Z, Taşçı F, Musa L, Hamadani A, Gündemir MG, Karalliu E, Siddiqui SA. Utilization of AI - reshaping the future of food safety, agriculture and food security - a critical review. Crit Rev Food Sci Nutr 2024:1-45. [PMID: 39644464 DOI: 10.1080/10408398.2024.2430749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Artificial intelligence is an emerging technology which harbors a suite of mechanisms that have the potential to be leveraged for reaping value across multiple domains. Lately, there is an increased interest in embracing applications associated with Artificial Intelligence to positively contribute to food safety. These applications such as machine learning, computer vision, predictive analytics algorithms, sensor networks, robotic inspection systems, and supply chain optimization tools have been established to contribute to several domains of food safety such as early warning of outbreaks, risk prediction, detection and identification of food associated pathogens. Simultaneously, the ambition toward establishing a sustainable food system has motivated the adoption of cutting-edge technologies such as Artificial Intelligence to strengthen food security. Given the myriad challenges confronting stakeholders in their endeavors to safeguard food security, Artificial Intelligence emerges as a promising tool capable of crafting holistic management strategies for food security. This entails maximizing crop yields, mitigating losses, and trimming operational expenses. AI models present notable benefits in efficiency, precision, uniformity, automation, pattern identification, accessibility, and scalability for food security endeavors. The escalation in the global trend for adopting alternative protein sources such as edible insects and microalgae as a sustainable food source reflects a growing recognition of the need for sustainable and resilient food systems to address the challenges of population growth, environmental degradation, and food insecurity. Artificial Intelligence offers a range of capabilities to enhance food safety in the production and consumption of alternative proteins like microalgae and edible insects, contributing to a sustainable and secure food system.
Collapse
Affiliation(s)
- Jerina Rugji
- Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Department of Food Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Zeki Erol
- Department of Food Hygiene and Technology, Necmettin Erbakan University, Ereğli, Konya, Turkey
| | - Fulya Taşçı
- Department of Food Hygiene and Technology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Laura Musa
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Ambreen Hamadani
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Esa Karalliu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| | | |
Collapse
|
2
|
Tan JP, Clyde CW, Ng CC, Yeap SK, Yong CY. Advancements in microbial-mediated radioactive waste bioremediation: A review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2024; 280:107530. [PMID: 39378736 DOI: 10.1016/j.jenvrad.2024.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
The global production of radioactive wastes is expected to increase in the coming years as more countries have resorted to adopting nuclear power to decrease their reliance on fossil-fuel-generated energy. Discoveries of remediation methods that can remove radionuclides from radioactive wastes, including those discharged to the environment, are therefore vital to reduce risks-upon-exposure radionuclides posed to humans and wildlife. Among various remediation approaches available, microbe-mediated radionuclide remediation have limited reviews regarding their advances. This review provides an overview of the sources and existing classification of radioactive wastes, followed by a brief introduction to existing radionuclide remediation (physical, chemical, and electrochemical) approaches. Microbe-mediated radionuclide remediation (bacterial, myco-, and phycoremediation) is then extensively discussed. Bacterial remediation involves biological processes like bioreduction, biosorption, and bioprecipitation. Bioreduction involves the reduction of water-soluble, mobile radionuclides to water-insoluble, immobile lower oxidation states by ferric iron-reducing, sulfate-reducing, and certain extremophilic bacteria, and in situ remediation has become possible by adding electron donors to contaminated waters to enrich indigenous iron- and sulfate-reducing bacteria populations. In biosorption, radionuclides are associated with functional groups on the microbial cell surface, followed by getting reduced to immobilized forms or precipitated intracellularly or extracellularly. Myco- and phycoremediation often involve processes like biosorption and bioaccumulation, where the former is influenced by pH and cell concentration. A Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis on microbial remediation is also performed. It is suggested that two research directions: genetic engineering of radiation-resistant microorganisms and co-application of microbe-mediated remediation with other remediation methods could potentially result in the discovery of in situ or ex situ microbe-involving radioactive waste remediation applications with high practicability. Finally, a comparison between the strengths and weaknesses of each approach is provided.
Collapse
Affiliation(s)
- Jin Ping Tan
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Christal Winona Clyde
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Chuck Chuan Ng
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences (CAMS), Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Wang Y, Luo Y, Dou Q, Li W, Li Q, Fu H. Real-time control of distillation process to improve the recovery efficiency of ThF 4-LiCl-KCl molten salt. RSC Adv 2024; 14:34135-34142. [PMID: 39469016 PMCID: PMC11513770 DOI: 10.1039/d4ra06788f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The purification and recovery of chloride electrolyte molten salts are vital to reuse this valuable species and reduce the waste. Vacuum distillation method was used to investigate the recovery efficiency of LiCl-KCl mixed molten salt containing 20 wt% ThF4. Rapid mass loss in the initial stage and the subsequent lower evaporation rate were significantly observed under 1173 K and 20 Pa due to the coordination species such as Li3ThF7 and LiTh2F9. To achieve the recovery efficiency of chloride salts, a real-time control distillation was proposed. The distillation was terminated when about 80% mixture salt was evaporated according to the transient weight loss curve. The evaporation ratio of LiCl-KCl reached 91% and the decontamination factors for Th and rare earth elements Nd and Sm were more than 103 and 102, respectively. The results provided a simple and effective scheme to separate ThF4 and recover molten salts from waste electrolyte salts.
Collapse
Affiliation(s)
- Yujiao Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Shanghai Jiaotong University Shanghai 200240 China
| | - Yan Luo
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Qiang Dou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Wenxin Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Qingnuan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| | - Haiying Fu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
| |
Collapse
|
4
|
Matarèse BFE, Desai R, Oughton DH, Mothersill C. EGO to ECO: Tracing the History of Radioecology from the 1950's to the Present Day. Radiat Res 2024; 202:273-288. [PMID: 39021078 DOI: 10.1667/rade-24-00035.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/09/2024] [Indexed: 07/20/2024]
Abstract
This paper starts with a brief history of the birth of the field of radioecology during the Cold War with a focus on US activity. We review the establishment of the international system for radiation protection and the science underlying the guidelines. We then discuss the famous ICRP 60 statement that if "Man" is protected, so is everything else and show how this led to a focus in radioecology on pathways to "Man" rather than concern about impacts on environments or ecosystems. We then review the contributions of Radiation Research Society members and papers published in Radiation Research which contributed to the knowledge base about effects on non-human species. These fed into international databases and computer-based tools such as ERICA and ResRad Biota to guide regulators. We then examine the origins of the concern that ICRP 60 is not sufficient to protect ecosystems and discuss the establishment of ICRP Committee 5 and its recommendations to establish reference animals and plants. The review finishes with current concerns that reference animals and plants (RAPs) are not sufficient to protect ecosystems, given the complexity of interacting factors such as the climate emergency and discusses the efforts of ICRP, the International Union of Radioecologists and other bodies to capture the concepts of ecosystem services and ecosystem complexity modelling in radioecology.
Collapse
Affiliation(s)
- Bruno F E Matarèse
- Department of Haematology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
- Department of Physics, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Rhea Desai
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| | | | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
5
|
Hassan A, Mollah MMR, Jayashree R, Jain A, Das S, Das N. Ultrafast Removal of Thorium and Uranium from Radioactive Waste and Groundwater Using Highly Efficient and Radiation-Resistant Functionalized Triptycene-Based Porous Organic Polymers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38687684 DOI: 10.1021/acsami.4c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Thorium (Th) and uranium (U) are important strategic resources in nuclear energy-based heavy industries such as energy and defense sectors that also generate significant radioactive waste in the process. The management of nuclear waste is therefore of paramount importance. Contamination of groundwater/surface water by Th/U is increasing at an alarming rate in certain geographical locations. This necessitates the development of strategic adsorbent materials with improved performance for capturing Th/U species from radioactive waste and groundwater. This report describes the design of a unique, robust, and radiation-resistant porous organic polymer (POP: TP-POP-SO3NH4), which demonstrates ultrafast removal of Th(IV) (<30 s)/U(VI) (<60 s) species present in simulated radioactive wastewater/groundwater samples. Thermal, chemical, and radiation stabilities of these POPs were studied in detail. The synthesized ammoniated POP revealed exceptional capture efficiency for trace-level Th (<4 ppb) and U (<3 ppb) metal ions through the cation-exchange mechanism. TP-POP-SO3NH4 shows a significant sorption capacity [Th (787 mg/g) and U (854 mg/g)] with an exceptionally high distribution coefficient (Kd) of 107 mL/g for Th. This work also demonstrates a facile protocol to convert a nonperforming POP, by simple chemical modifications, into a superfast adsorbent for efficient uptake/removal of U/Th.
Collapse
Affiliation(s)
- Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | - Md Mofizur Rahman Mollah
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Ravikumar Jayashree
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Ashish Jain
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Soumen Das
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| |
Collapse
|
6
|
Liu L, Liu F, Yan Z, Zhou H, Song W. Transcriptome analysis of damage mechanism of Candida utilis under U(VI) stress. MARINE POLLUTION BULLETIN 2023; 196:115650. [PMID: 37839133 DOI: 10.1016/j.marpolbul.2023.115650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Marine radioactive pollution has a great impact on Marine microorganisms, but the damage mechanism by hexavalent uranium (U(VI)) exposure has been rarely known. In this study, Candida utilis (C. utilis) were exposed to U(VI) for 50, 100 and 150 mg/L, and then morphologic change and RNA-Seq in C. utilis were determined. U(VI) exposure significantly induced the changes of morphological characteristics of C. utilis. There were 39 DEGs in the 50 mg/L treated group, including 30 up-regulated genes and 9 down-regulated genes. There were 196 DEGs, 31 up-regulated and 165 down-regulated in the 100 mg/L treated group. The 150 mg/L treated group had 272 DEGs, 74 up-regulated and 198 down-regulated, compared with the control group. The results showed that the number of DEGs increased dose-dependently with U(VI) treatment. The results of this study provide a theoretical basis for the mechanism of radioactive wastewater damage to Marine microorganisms.
Collapse
Affiliation(s)
- Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei 230011, PR China
| | - Fang Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Zhuna Yan
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Han Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Wencheng Song
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123 Suzhou, PR China.
| |
Collapse
|
7
|
Pereira WS, Kelecom A, Lopes JM, Charles-Pierre M, Campelo ELC, Carmo AS, Filho LGP, Paiva AKS, Silva AX. Application of radiological assessment as water quality criterion for effluent release in a Brazilian uranium mine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65379-65391. [PMID: 37084045 DOI: 10.1007/s11356-023-26964-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Uranium mining causes several radiological impacts on the surrounding environment, notably in the water bodies, mainly due to the release of long half-life radionuclides from the 238U and 232Th series. The Ore Treatment Unit, an old uranium mine undergoing decommissioning, has three points of liquid effluent release (#014, #025, and #076). For current study, 78 samples of water were collected at #014, 33 samples at #025, and 63 samples at #076. The radionuclides were analyzed by gross alpha count, gross beta count, and by arsenazo spectrophotometry. Analyses were carried out using the radiological water quality criterion established by World Health Organization and other organizations, together with the Brazilian legislation, to assess if the released effluents may be used unrestrictedly by the individuals of the public. At #014, the mean values of activity concentration (AC), in Bq·L-1, were as follows: Unat = 0.107, 226Ra = 0.035, 210Pb = 0.031, 232Th = 0.007, and 228Ra = 0.049. At #025 the mean values of AC, in Bq·L-1, were as follows: Unat = 0.086, 226Ra = 0.015, 210Pb = 0.028, 232Th = 0.006, and 228Ra = 0.032. Finally, at point #076, the mean AC values, in Bq·L-1, were as follows: Unat = 3.624, 226Ra = 0.074, 210Pb = 0.054, 232Th = 0.013, and 228Ra = 0.069. The current study showed that natural radionuclides were not in secular equilibrium. Despite uranium presented its values outside the limits of guidance levels, it can be state that the unrestricted use of effluents released in the three water bodies is authorized from the radiological point of view. In terms of dose rate, the releases at three points were within the radiological limits of potability. On the other hand, in an additional analysis, #76 presented chemical toxicity above the authorized value, pointing the need of restricted use of water from the point of view of chemical toxicity.
Collapse
Affiliation(s)
- Wagner S Pereira
- Indústrias Nucleares do Brasil S/A - INB, 27.555-000, Resende, RJ, Brasil.
- Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro - UFRJ, 21.941-972, Rio de Janeiro, Brasil.
| | - Alphonse Kelecom
- Instituto de Biologia, Universidade Federal Fluminense - UFF, 24.001-970, Niterói, Brasil
| | - José M Lopes
- Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia - UFBA, 40.170-115, Salvador, Brasil
- Programa de Pós-Graduação em Geoquímica (POSPETRO), Universidade Federal da Bahia - UFBA, 40.170-110, Salvador, Brasil
| | - Maxime Charles-Pierre
- Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro - UFRJ, 21.941-972, Rio de Janeiro, Brasil
| | | | - Alessander S Carmo
- Setor de Criogenia, Centro Brasileiro de Pesquisas Físicas - CBPF, 22290-180, Rio de Janeiro, Brasil
| | - Lucas G Padilha Filho
- Departamento de Radiologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro - UFRJ, 21941-617, Rio de Janeiro, Brasil
- Fundação Técnico Educacional Souza Marques - FTESM, 21310-310, Rio de Janeiro, Brasil
| | - Alexandre K S Paiva
- Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro - UFRJ, 21.941-972, Rio de Janeiro, Brasil
| | - Ademir X Silva
- Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro - UFRJ, 21.941-972, Rio de Janeiro, Brasil
| |
Collapse
|