1
|
Liu S, Li Y, Zhan C, Liu H, Zhang J, Guo K, Hu T, Kunwar B, Fang L, Wang Y. Assessing bioavailability risks of heavy metals in polymetallic mining regions: a comprehensive analysis of soils with varied land uses. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:975. [PMID: 39312081 DOI: 10.1007/s10661-024-13144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024]
Abstract
To accurately assess the bioavailability risk of heavy metals (HMs) in a representative polymetallic mining region, we undertook an exhaustive analysis of Cu, Pb, Ni, Co, Cd, Zn, Mn, and Cr in soils from diverse land-use types, encompassing agricultural, forest, residential, and mining areas. We employed speciation analysis methods and a modified risk assessment approach to ascertain potential ecological threats posed by the HMs. Our findings reveal that both the total potential ecological risk and the modified bioavailability risks are most pronounced in the soil of the mining area. The modified bioavailability threats are primarily caused by Pb, Ni, Cd, and Co. Although the total potential ecological risk of Cu is high in the local soil, the predominance of its stable forms reduces its mobility, thereby mitigating its detrimental impact on the ecosystem. Additionally, medium modified bioavailability risks were identified in the peripheries of agricultural and forest areas, potentially attributable to geological processes and agricultural activities. Within the urban district, medium risks were observed in residential and mining areas, likely resulting from mining, metallurgy, industrial operations, and traffic-related activities. This study provides critical insights that can assist governmental authorities in devising targeted policies to alleviate health hazards associated with soils in polymetallic mining regions.
Collapse
Affiliation(s)
- Shan Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Yanni Li
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Changlin Zhan
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Hongxia Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Kuangxin Guo
- Department of Environmental and Resource Engineering, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Tianpeng Hu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Bhagawati Kunwar
- Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, 464-8601, Japan
| | - Lihu Fang
- Research Center of Ecological Environment Restoration and Resources Comprehensive Utilization, The First Geological Brigade of Hubei Geological Bureau, Huangshi, 435000, China
| | - Yanan Wang
- Research Center of Ecological Environment Restoration and Resources Comprehensive Utilization, The First Geological Brigade of Hubei Geological Bureau, Huangshi, 435000, China
| |
Collapse
|
2
|
Du Z, Wang S, Xing W, Xue L, Xiao J, Chen G. Plant traits regulated metal(loid)s in dominant herbs in an antimony mining area of the karst zone, China. Ecol Evol 2024; 14:e70212. [PMID: 39184569 PMCID: PMC11343610 DOI: 10.1002/ece3.70212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Understanding how plant functional traits respond to mining activities and impact metal(loid)s accumulation in dominant species is crucial for exploring the driving mechanisms behind plant community succession and predicting the ecological restoration potential of these plants. In this study, we investigated four dominant herbaceous species (Artemisia argyi, Miscanthus sinensis, Ficus tikoua, and Ageratina adenophora) growing on antimony (Sb) mining sites (MS) with high Sb and arsenic (As) levels, as well as non-mining sites (NMS). The aim was to analyze the variations in functional traits and their contribution to Sb and As concentrations in plants. Our results indicate that mining activities enhanced soil nitrogen (N) limitation and phosphorus (P) enrichment, while significantly reducing the plant height of three species, except for F. tikoua. The four species absorbed more calcium (Ca) to ensure higher tolerance to Sb and As levels, which is related to the activation of Ca signaling pathways and defense mechanisms. Furthermore, plant Sb and As concentrations were dependent on soil metal(loid) levels and plant element stoichiometry. Overall, these findings highlight the regulatory role of plant element traits in metal(loid) concentrations, warranting widespread attention and further study in the future.
Collapse
Affiliation(s)
- Zhongyu Du
- Research Institute of Subtropical ForestryChinese Academy of ForestryHangzhouChina
| | - Shufeng Wang
- Research Institute of Subtropical ForestryChinese Academy of ForestryHangzhouChina
| | - Wenli Xing
- Research Institute of Subtropical ForestryChinese Academy of ForestryHangzhouChina
| | - Liang Xue
- Research Institute of Subtropical ForestryChinese Academy of ForestryHangzhouChina
| | - Jiang Xiao
- Research Institute of Subtropical ForestryChinese Academy of ForestryHangzhouChina
| | - Guangcai Chen
- Research Institute of Subtropical ForestryChinese Academy of ForestryHangzhouChina
| |
Collapse
|
3
|
Zhang H, Ji Z, Chen W, Pei Y. Codisposal of landfill leachate concentrate and antimony mine soils using a one-part geopolymer system for cationic and anionic heavy metals immobilization. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132909. [PMID: 37979425 DOI: 10.1016/j.jhazmat.2023.132909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 11/20/2023]
Abstract
Geopolymer solidification/stabilization technology has developed rapidly in the remediation field of heavy metal-contaminated soil. However, geopolymers exhibit low anionic heavy metal immobilization efficiency due to their electronegativity and alkali activation characteristics. This study constructed a one-part blast furnace slag-based geopolymer system using landfill leachate concentrate (LLC) as chlorine and humic acid sources and achieved the solidification/stabilization of cations (Cd, Cu, Hg, and Pb) and anions (Sb and As) in the antimony mine soils (AMS). The LLC addition increased the Sb and As fixation rates from 92%∼94% and 82∼86%, respectively, to over 99%, reducing the leaching concentration of all heavy metal ions to the ppb level. LLC improved the chemical stability and physical encapsulation of Sb/As in three ways: inducing a Friedel's salt (FS) formation, enhancing humic acid complexation/chelation, and promoting geopolymerization. Wet curing was more conducive to FS formation in the geopolymer than dry curing and increased the 28-day compressive strength by 38.5%. Due to the SiO2 skeleton support effect in AMS, a 30 wt% AMS addition was beneficial for geopolymer strength development. Our study provided a harmless method for the codisposal of LLC and AMS and improved the efficiency of geopolymer fixation of complex heavy metal cations and anions.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Zehua Ji
- Research Center for Water Quality and Ecology, Tsinghua University, Beijing 100084, PR China
| | - Weitong Chen
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China
| | - Yuansheng Pei
- State Key Laboratory of Water Environment Simulation, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
4
|
Li Y, Liu S, Zhan C, Liu H, Zhang J, Guo J, Fang L, Wang Y. Source-based health risk assessment of heavy metal contamination in soil: a case study from a polymetallic mining region in Southeastern Hubei, Central China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:12. [PMID: 38147164 DOI: 10.1007/s10653-023-01804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 12/27/2023]
Abstract
To conduct a precise health risk assessment of heavy metals (HMs) in soil, it is imperative to ascertain the primary sources of potential health risks. In this study, we conducted comprehensive measurements of HMs, specifically focusing on the accumulation of Cu, Cd, Sb, Zn, and Pb in local soil, which may pose threats to environmental quality. To achieve our objective, we employed a method that combines positive matrix factorization with a health risk assessment model to quantify the health risks associated with specific sources. The results obtained from the geo-accumulation index indicate that the majority of HMs found in the local soil are influenced by anthropogenic activities. Among these sources, local industrial-related activities contributed the largest proportion of HMs to the soil at 34.7%, followed by natural sources at 28.7%, mining and metallurgy-related activities at 28.2%, and traffic-related activities at 8.40%. Although the non-carcinogenic and carcinogenic risks associated with individual HMs were found to be below safety thresholds, the cumulative health risks stemming from total HMs exceeded safety limits for children. Moreover, the unacceptable health risks for children originating from industrial-related activities, natural sources, and mining and metallurgy-related activities were primarily concentrated in proximity to mining sites and industrial areas within the local region. This investigation furnishes valuable insights that can aid governmental authorities in formulating precise control policies to mitigate health threats posed by soils in polymetallic mining areas.
Collapse
Affiliation(s)
- Yanni Li
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Shan Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China.
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Changlin Zhan
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Hongxia Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Jianlin Guo
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China
- Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Lihu Fang
- The First Geological Brigade of Hubei Geological Bureau, Research Center of Ecological Environment Restoration and Resources Comprehensive Utilization, Huangshi, 435000, China
| | - Yanan Wang
- The First Geological Brigade of Hubei Geological Bureau, Research Center of Ecological Environment Restoration and Resources Comprehensive Utilization, Huangshi, 435000, China
| |
Collapse
|