1
|
Vignale FA, Bernal Rey D, Pardo AM, Almasqué FJ, Ibarra JG, Fernández Do Porto D, Turjanski AG, López NI, Helman RJM, Raiger Iustman LJ. Spatial and Seasonal Variations in the Bacterial Community of an Anthropogenic Impacted Urban Stream. MICROBIAL ECOLOGY 2023; 85:862-874. [PMID: 35701635 DOI: 10.1007/s00248-022-02055-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/02/2022] [Indexed: 05/04/2023]
Abstract
Environmental changes and human activities can alter the structure and diversity of aquatic microbial communities. In this work, we analyzed the bacterial community dynamics of an urban stream to understand how these factors affect the composition of river microbial communities. Samples were taken from a stream situated in Buenos Aires, Argentina, which flows through residential, peri-urban horticultural, and industrial areas. For sampling, two stations were selected: one influenced by a series of industrial waste treatment plants and horticultural farms (PL), and the other influenced by residential areas (R). Microbial communities were analyzed by sequence analysis of 16S rRNA gene amplicons along an annual cycle. PL samples showed high nutrient content compared with R samples. The diversity and richness of the R site were more affected by seasonality than those of the PL site. At the amplicon sequence variants level, beta diversity analysis showed a differentiation between cool-season (fall and winter) and warm-season (spring and summer) samples, as well as between PL and R sites. This demonstrated that there is spatial and temporal heterogeneity in the composition of the bacterial community, which should be considered if a bioremediation strategy is applied. The taxonomic composition analysis also revealed a differential seasonal cycle of phototrophs and chemoheterotrophs between the sampling sites, as well as different taxa associated with each sampling site. This analysis, combined with a comparative analysis of global rivers, allowed us to determine the genera Arcobacter, Simplicispira, Vogesella, and Sphingomonas as potential bioindicators of anthropogenic disturbance.
Collapse
Affiliation(s)
- Federico A Vignale
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Daissy Bernal Rey
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Instituto de Química Física de los Materiales, Medio Ambiente Y Energía (INQUIMAE)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Agustín M Pardo
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Facultad de Ciencias Exactas Y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Facundo J Almasqué
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - José G Ibarra
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Darío Fernández Do Porto
- Facultad de Ciencias Exactas Y Naturales, Instituto de Cálculo, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Adrián G Turjanski
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Nancy I López
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Renata J Menéndez Helman
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Laura J Raiger Iustman
- Instituto de Química Biológica de La Facultad de Ciencias Exactas Y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
- Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
2
|
Raiger Iustman LJ, Almasqué FJ, Vullo DL. Microbiota Diversity Change as Quality Indicator of Soils Exposed to Intensive Periurban Agriculture. Curr Microbiol 2020; 78:338-346. [PMID: 33249534 DOI: 10.1007/s00284-020-02298-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022]
Abstract
In Argentina, periurban agriculture is performed by farmers with inadequate training in the use of pesticides and chemical fertilizers, developing horticulture with serious soil deterioration. The aim of this work was to monitor bacterial diversity of a horticultural soil (S) and a reference soil (R) as quality index for the design of future restoration strategies. As crops changed together with the agrochemical applications, sample collection was before harvest for strawberries, post-harvest for red peppers, pre-harvest broccoli crop and of a resting soil in treatment with poultry litter as a fertilizing amendment. Bacterial diversity was analysed by the use of high throughput sequencing of the V1-V3 region of the 16S rRNA gene. Analysis of R soils seemed relatively constant in time, enriched in Alphaproteobacteria and Acidobacteria consistent with a reference to soil health. The effect of the intensive use of S soils was proved by differences in Chloroflexi, Bacteroidetes and Proteobacteria relative abundances. The main evidence of the alteration of S soils was the increase in Bacteroidetes and Betaproteobacteria. A weak recuperation trend of S soil microbiota was registered during a post-harvest inactive period. A strong influence of the soil use routine-consisting in high crop rotation and short time-rest cycles-on microbial community structure was verified. These results indicate the microbiota perturbation, caused by the intense use of periurban agriculture soils and will contribute for further actions to improve environment quality.
Collapse
Affiliation(s)
- Laura J Raiger Iustman
- Depto. de Química Biológica, Facultad de Ciencias Exactas y Naturales (UBA), IQUIBICEN-CONICET. Pab. II, Piso 4, Ciudad Universitaria, (1428), Buenos Aires, Argentina
| | - Facundo J Almasqué
- Depto. de Química Biológica, Facultad de Ciencias Exactas y Naturales (UBA), IQUIBICEN-CONICET. Pab. II, Piso 4, Ciudad Universitaria, (1428), Buenos Aires, Argentina
| | - Diana L Vullo
- Área Química, Instituto de Ciencias, Universidad Nacional de General Sarmiento-CONICET, J.M. Gutierrez 1150, B1613GSX, Los Polvorines, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Pseudomonas putida and Pseudomonas fluorescens Species Group Recovery from Human Homes Varies Seasonally and by Environment. PLoS One 2015; 10:e0127704. [PMID: 26023929 PMCID: PMC4449118 DOI: 10.1371/journal.pone.0127704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/17/2015] [Indexed: 02/03/2023] Open
Abstract
By shedding light on variation in time as well as in space, long-term biogeographic studies can help us define organisms' distribution patterns and understand their underlying drivers. Here we examine distributions of Pseudomonas in and around 15 human homes, focusing on the P. putida and P. fluorescens species groups. We describe recovery from 10,941 samples collected during up to 8 visits per home, occurring on average 2.6 times per year. We collected a mean of 141 samples per visit, from sites in most rooms of the house, from the surrounding yards, and from human and pet occupants. We recovered Pseudomonas in 9.7% of samples, with the majority of isolates being from the P. putida and P. fluorescens species groups (approximately 62% and 23% of Pseudomonas samples recovered respectively). Although representatives of both groups were recovered from every season, every house, and every type of environment sampled, recovery was highly variable across houses and samplings. Whereas recovery of P. putida group was higher in summer and fall than in winter and spring, P. fluorescens group isolates were most often recovered in spring. P. putida group recovery from soils was substantially higher than its recovery from all other environment types, while higher P. fluorescens group recovery from soils than from other sites was much less pronounced. Both species groups were recovered from skin and upper respiratory tract samples from healthy humans and pets, although this occurred infrequently. This study indicates that even species that are able to survive under a broad range of conditions can be rare and variable in their distributions in space and in time. For such groups, determining patterns and causes of stochastic and seasonal variability may be more important for understanding the processes driving their biogeography than the identity of the types of environments in which they can be found.
Collapse
|
5
|
Ceretti H, Vullo D, Zalts A, Ramírez S. Effect of bacterial growth in the complexing capacity of a culture medium supplemented with cadmium(II). World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0242-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Vullo DL, Ceretti HM, Daniel MA, Ramírez SAM, Zalts A. Cadmium, zinc and copper biosorption mediated by Pseudomonas veronii 2E. BIORESOURCE TECHNOLOGY 2008; 99:5574-5581. [PMID: 18158237 DOI: 10.1016/j.biortech.2007.10.060] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 10/25/2007] [Accepted: 10/25/2007] [Indexed: 05/25/2023]
Abstract
Adsorption properties of bacterial biomass were tested for Cd removal from liquid effluents. Experimental conditions (pH, time, cellular mass, volume, metal concentration) were studied to develop an efficient biosorption process with free or immobilised cells of Pseudomonas veronii 2E. Surface fixation was chosen to immobilise cells on inert surfaces including teflon membranes, silicone rubber and polyurethane foam. Biosorption experiments were carried out at 32 degrees C and controlled pH; maximal Cd(II) retention was observed at pH 7.5. The isotherm followed the Langmuir model (K(d)=0.17 mM and q(max)=0.48 mmol/g cell dry weight). Small changes in the surface negative charge of cells were observed by electrophoretic mobility experiments in presence of Cd(II). In addition, biosorption of 40% Cu(II) (pH 5 and 6.2) and 50% Zn(II) and 50% Cd(II) (pH 7.5) was observed from mixtures of Cu(II), Zn(II) and Cd(II) 0.5mM each.
Collapse
Affiliation(s)
- Diana L Vullo
- Area Química, Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, (B1613GSX) Los Polvorines, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|