1
|
Lee SJ, Prithiviraj B, Lee HY, Kim SJ, Seo YK, Kim H, Choi SD. Geographic information system-based determination of priority monitoring areas for hazardous air pollutants in an industrial city. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:506. [PMID: 38702588 DOI: 10.1007/s10661-024-12626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Industrial cities are hotspots for many hazardous air pollutants (HAPs), which are detrimental to human health. We devised an identification method to determine priority HAP monitoring areas using a comprehensive approach involving monitoring, modeling, and demographics. The methodology to identify the priority HAP monitoring area consists of two parts: (1) mapping the spatial distribution of selected categories relevant to the target pollutant and (2) integrating the distribution maps of various categories and subsequent scoring. The identification method was applied in Ulsan, the largest industrial city in South Korea, to identify priority HAP monitoring areas. Four categories related to HAPs were used in the method: (1) concentrations of HAPs, (2) amount of HAP emissions, (3) the contribution of industrial activities, and (4) population density in the city. This method can be used to select priority HAP monitoring areas for intensive monitoring campaigns, cohort studies, and epidemiological studies.
Collapse
Affiliation(s)
- Sang-Jin Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Balasubramanian Prithiviraj
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ho-Young Lee
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Seong-Joon Kim
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Young-Kyo Seo
- Air Quality Research Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Hyunjoo Kim
- Department of Occupational and Environmental Medicine, Ewha Womans University Mokdong Hospital, Seoul, 07985, Republic of Korea
| | - Sung-Deuk Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
2
|
Attiya AA, Jones BG. An extensive dust storm impact on air quality on 22 November 2018 in Sydney, Australia, using satellite remote sensing and ground data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:432. [PMID: 35568770 PMCID: PMC9107411 DOI: 10.1007/s10661-022-10080-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/21/2022] [Indexed: 05/05/2023]
Abstract
Recurrent dust storms represent a significant concern in Australia because of their related hazards and damages since particulate matter (PM) has harmful impacts on the environmental, health and economic sectors. The particulate matter may be released from natural sources and human activities. The major part of natural particulate matter is emitted into the air by wind erosion processes from desert and semi-desert areas at the world scale. A huge dust storm crossed over several areas of New South Wales (NSW), Australia, including the Sydney region on 21-22 November 2018 and decreased the horizontal visibility to less than 1 km for 22 h. This study examined the synoptic weather conditions, and assessed the air quality and identified the source and transport trajectory of the dust storm over Sydney using ground and satellite remote sensing data. PM10 (< 10 μm) concentrations were obtained from selected air quality monitoring sites operated by the Environmental Protection Agency in NSW. The highest hourly concentration of PM10 (578.7 μg/m3) was recorded at Singleton in the Hunter Valley, while concentrations in Sydney ranged from 480 to 385 μg/m3, well above the standard air quality level in Australia (50 μg/m3 per 24 h). The HYSPLIT back trajectories of air parcels suggest that the potential sources of the dust episode originated from the Lake Eyre Basin and northeast South Australia, the Mundi Mundi plains west of Broken Hill, Cobar and the grazing lands and the red sandplains in northwestern NSW. It then travelled towards the east coast. These long-range airflows transported suspended dust particles, raising air quality to hazardous levels (elevated PM10 levels) over most areas of NSW. The results from the HYSPLIT model for dust movement are confirmed by MODIS satellite images. Many areas of NSW experienced this intense dust storm due to northwest wind generated by the low-pressure systems and cold fronts over South Australia and many parts of western NSW as it moved eastward.
Collapse
Affiliation(s)
- Ali A Attiya
- Atmospheric Science Department, Science Faculty, Mustansiriyah University, Baghdad, Iraq.
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Brian G Jones
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
3
|
Longoria-Rodríguez FE, González LT, Mendoza A, Leyva-Porras C, Arizpe-Zapata A, Esneider-Alcalá M, Acuña-Askar K, Gaspar-Ramirez O, López-Ayala O, Alfaro-Barbosa JM, Kharissova OV. Environmental Levels, Sources, and Cancer Risk Assessment of PAHs Associated with PM 2.5 and TSP in Monterrey Metropolitan Area. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:377-391. [PMID: 32025753 DOI: 10.1007/s00244-019-00701-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
In this work, the content of polycyclic aromatic hydrocarbons (PAHs) in total suspended particles and particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5) was analyzed using gas chromatography-mass spectrometry. In addition, a sequential chemical analysis of C-rich particles was performed through the parallel coupling of micro-Raman spectroscopy and scanning electron microscopy with X-ray scattering detection. Samples were collected at four sites in the Monterrey metropolitan area, Mexico. A total of 13 PAHs were quantified; indeno(1,2,3-cd)pyrene, chrysene, and benzo(a)anthracene were the most abundant. The total PAH concentrations at the four sampling sites ranged from 1.34 to 8.76 μg/m3. The diagnostic relation of the PAHs indicates that these compounds were emitted by the burning of gasoline and diesel and by the burning of charcoal and biomass. The sequential analysis correlated the morphology and the elemental/molecular composition of the C-rich particles, associated with the PAHs, with their possible emission sources. The estimated lifetime excess cancer risk for inhalation was higher than that established by the World Health Organization, which clearly makes this a potential health risk for the population.
Collapse
Affiliation(s)
- Francisco E Longoria-Rodríguez
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Mty), Unidad Monterrey, Alianza Norte 202, C.P. 66628, Apodaca, N.L., Mexico
| | - Lucy T González
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, C.P. 64890, Monterrey, N.L., Mexico.
| | - Alberto Mendoza
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, C.P. 64890, Monterrey, N.L., Mexico
| | - Cesar Leyva-Porras
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes # 120, C.P. 31136, Chihuahua, Chih., Mexico
| | - Alejandro Arizpe-Zapata
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Mty), Unidad Monterrey, Alianza Norte 202, C.P. 66628, Apodaca, N.L., Mexico
| | - Miguel Esneider-Alcalá
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Mty), Unidad Monterrey, Alianza Norte 202, C.P. 66628, Apodaca, N.L., Mexico
| | - Karim Acuña-Askar
- Universidad Autónoma de Nuevo León, Laboratorio de Biorremediación Ambiental, Facultad de Medicina, C.P. 64460, Monterrey, N.L., Mexico
| | - Octavio Gaspar-Ramirez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Unidad Noreste (CIATEJ), Apodaca, N.L., Mexico
| | - Olivia López-Ayala
- Universidad Autónoma de Nuevo León, Laboratorio de Química Analítica Ambiental, Facultad de Ciencias Químicas, C.P. 64570, Monterrey, N.L., Mexico
| | - Juan M Alfaro-Barbosa
- Universidad Autónoma de Nuevo León, Laboratorio de Química Analítica Ambiental, Facultad de Ciencias Químicas, C.P. 64570, Monterrey, N.L., Mexico
| | - Oxana V Kharissova
- Universidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, Facultad de Fisicomatemáticas, San Nicolás de los Garza, Mexico
| |
Collapse
|
4
|
Hong WJ, Jia H, Ma WL, Sinha RK, Moon HB, Nakata H, Minh NH, Chi KH, Li WL, Kannan K, Sverko E, Li YF. Distribution, Fate, Inhalation Exposure and Lung Cancer Risk of Atmospheric Polycyclic Aromatic Hydrocarbons in Some Asian Countries. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7163-74. [PMID: 27268081 DOI: 10.1021/acs.est.6b01090] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A large-scale monitoring program, the Asia Soil and Air Monitoring Program (Asia-SAMP), was conducted in five Asian countries, including China, Japan, South Korea, Vietnam, and India. Air samples were collected using passive air samplers with polyurethane foam disks over four consecutive 3-month periods from September 2012 to August 2013 to measure the seasonal concentrations of 47 polycyclic aromatic hydrocarbons (PAHs), including 21 parent and 26 alkylated PAHs, at 176 sites (11 background, 83 rural, and 82 urban). The annual concentrations of total 47 PAHs (∑47PAHs) at all sites ranged from 6.29 to 688 ng/m(3) with median of 82.2 ng/m(3). Air concentrations of PAHs in China, Vietnam, and India were greater than those in Japan and South Korea. As expected, the air concentrations (ng/m(3)) were highest at urban sites (143 ± 117) followed by rural (126 ± 147) and background sites (22.4 ± 11.4). Significant positive correlations were found between PAH concentrations and atmosphere aerosol optical depth. The average benzo(a)pyrene equivalent concentration (BaPeq) was 5.61 ng/m(3). It was estimated that the annual BaPeq concentrations at 78.8% of the sampling sites exceeded the WHO guideline level. The mean population attributable fraction (PAF) for lung cancer due to inhalation exposure to outdoor PAHs was on the order 8.8‰ (0.056-52‰) for China, 0.38‰ (0.007-3.2‰) for Japan, 0.85‰ (0.042-4.5‰) for South Korea, 7.5‰ (0.26-27‰) for Vietnam, and 3.2‰ (0.047-20‰) for India. We estimated a number of lifetime excess lung cancer cases caused by exposure to PAHs, which the concentrations ranging from 27.8 to 2200, 1.36 to 108, 2.45 to 194, 21.8 to 1730, and 9.10 to 720 per million people for China, Japan, South Korea, Vietnam, and India, respectively. Overall, the lung cancer risk in China and Vietnam were higher than that in Japan, South Korea, and India.
Collapse
Affiliation(s)
- Wen-Jun Hong
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University , Dalian 116026, China
| | - Hongliang Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University , Dalian 116026, China
| | - Wan-Li Ma
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , Harbin 150090, China
| | | | - Hyo-Bang Moon
- IJRC-PTS, Department of Marine Sciences and Convergent Technology, Hanyang University , 55 Hanyangdaehak-ro, Sangnok-gu, Ansan city, Gyeonggi-do 426-791, Republic of Korea
| | - Haruhiko Nakata
- IJRC-PTS, Graduate School of Science and Technology, Kumamoto University , 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Nguyen Hung Minh
- DIOXIN LABORATORY, Center for Environmental Monitoring (CEM), Vietnam Environmental Administration (VEA) , 556 Nguyen Van Cu, Long Bien, Ha Noi, Vietnam
| | - Kai Hsien Chi
- Institute of Environmental and Occupational Health Sciences, National Yang Ming University , Taipei 112, Taiwan
| | - Wen-Long Li
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , Harbin 150090, China
| | - Kurunthachalam Kannan
- IJRC-PTS, Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany , Empire State Plaza, P.O. Box 509, Albany, New York 12201-0509, United States
| | - Ed Sverko
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University , Dalian 116026, China
- IJRC-PTS, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology , Harbin 150090, China
- IJRC-PTS-NA , Toronto, M2N 6X9, Canada
| |
Collapse
|
5
|
Rogula-Kozłowska W, Majewski G, Czechowski PO. The size distribution and origin of elements bound to ambient particles: a case study of a Polish urban area. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:240. [PMID: 25861901 PMCID: PMC4412378 DOI: 10.1007/s10661-015-4450-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/18/2015] [Indexed: 05/05/2023]
Abstract
Ambient particulate matter (PM) was sampled in Zabrze (southern Poland) in the heating period of 2009. It was investigated for distribution of its mass and of the masses of its 18 component elements (S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb) among 13 PM size fractions. In the paper, the distribution modality of and the correlations between the ambient concentrations of these elements are discussed and interpreted in terms of the source apportionment of PM emissions. By weight, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Ge, As, Br, Sr, Cd, Sb, Ba, and Pb were 10% of coarse and 9% of ultrafine particles. The collective mass of these elements was no more than 3.5 % of the mass of the particles with the aerodynamic diameter D p between 0.4 and 1.0 μm (PM₀.₄₋₁), whose ambient mass concentration was the highest. The PM mass size distribution for the sampling period is bimodal; it has the accumulation and coarse modes. The coarse particles were probably of the mineral/soil origin (characteristic elements: Ca, Fe, Sr, and Ba), being re-suspended polluted soil or road dust (characteristic elements: Ca, Fe, Sr, Ba, S, K, Cr, Cu, Zn, Br, Sb, Pb). The maxima of the density functions (modes) of the concentration distributions with respect to particle size of PM-bound S, Cl, K, Cu, Zn, Ge, Br, Cd, Sb, and Pb within the D p interval from 0.108 to 1.6 μm (accumulation PM particles) indicate the emissions from furnaces and road traffic. The distributions of PM-bound As, Mn, Ba, and Sr concentrations have their modes within D p ≤ 0.108 μm (nucleation PM particles), indicating the emissions from high-temperature processes (industrial sources or car engines). In this work, principal component analysis (PCA) is applied separately to each of the 13 fraction-related sets of the concentrations of the 18 PM-bound elements, and further, the fractions are grouped by their origin using cluster analysis (CA) applied to the 13 fraction-related first principal components (PC1). Four distinct groups of the PM fractions are identified: (PM₁.₆₋₂.₅, PM₂.₅₋₄.₄,), (PM₀.₀₃₋₀.₀₆, PM₀.₁₀₈₋₀.₁₇), (PM₀.₀₆₋₀.₁₀₈, PM₀.₁₇₋₀.₂₆, PM₀.₂₆₋₀.₄, PM₀.₄₋₀.₆₅, PM₀.₆₅₋₁, PM₁₋₁.₆), and (PM₄.₄₋₆.₈, PM₆.₈₋₁₀, PM>₁₀). The PM sources attributed to these groups by using PCA followed by CA are roughly the same as the sources from the apportionment done by analyzing the modality of the mass size distributions.
Collapse
Affiliation(s)
- Wioletta Rogula-Kozłowska
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowska-Curie St., 41-819, Zabrze, Poland,
| | | | | |
Collapse
|
6
|
Lee BK, Park GH. Characteristics of heavy metals in airborne particulate matter on misty and clear days. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:406-416. [PMID: 20851516 DOI: 10.1016/j.jhazmat.2010.08.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/13/2010] [Accepted: 08/13/2010] [Indexed: 05/29/2023]
Abstract
This study identified characteristics of heavy metals in ambient total suspended particulates (TSP) and air pollutants (PM(10), CO, NO(x), SO(2) and O(3)) collected on clear and misty days at an urban-residential area and an industrial area in the largest industrial city, Korea, for one-year study period. Average concentrations of TSP at the urban-residential (130 μg/m(3)) and industrial (141 μg/m(3)) areas on misty days were 1.9-2.1 (p<0.05) times higher than those on clear days. Concentrations of heavy metals in the TSP from both areas on misty days were significantly (p<0.05) higher than those on clear days. In particular, Pb and Mn concentrations on misty days were 2.4-2.6 (p<0.05) and 1.7-1.8 (p<0.05) times, respectively, higher at both areas as compared to clear days. Clear days showed higher correlations between TSP and heavy metal concentrations than on misty days at both areas. Average concentrations of PM(10), CO and NO(2) simultaneously measured at/near the sampling sites on misty days were significantly (p<0.05) higher than on clear days at both areas. Average O(3) and SO(2) concentrations showed a similar increase pattern at only one area.
Collapse
Affiliation(s)
- Byeong-Kyu Lee
- Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 680-749, Republic of Korea.
| | - Gee-Hyeong Park
- Busan Institute of Health and Environmental Research, Busan, Republic of Korea
| |
Collapse
|
7
|
Shea KM, Truckner RT, Weber RW, Peden DB. Climate change and allergic disease. J Allergy Clin Immunol 2008; 122:443-53; quiz 454-5. [PMID: 18774380 DOI: 10.1016/j.jaci.2008.06.032] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 06/13/2008] [Accepted: 06/26/2008] [Indexed: 11/17/2022]
Abstract
Climate change is potentially the largest global threat to human health ever encountered. The earth is warming, the warming is accelerating, and human actions are largely responsible. If current emissions and land use trends continue unchecked, the next generations will face more injury, disease, and death related to natural disasters and heat waves, higher rates of climate-related infections, and wide-spread malnutrition, as well as more allergic and air pollution-related morbidity and mortality. This review highlights links between global climate change and anticipated increases in prevalence and severity of asthma and related allergic disease mediated through worsening ambient air pollution and altered local and regional pollen production. The pattern of change will vary regionally depending on latitude, altitude, rainfall and storms, land-use patterns, urbanization, transportation, and energy production. The magnitude of climate change and related increases in allergic disease will be affected by how aggressively greenhouse gas mitigation strategies are pursued, but at best an average warming of 1 to 2 degrees C is certain this century. Thus, anticipation of a higher allergic disease burden will affect clinical practice as well as public health planning. A number of practical primary and secondary prevention strategies are suggested at the end of the review to assist in meeting this unprecedented public health challenge.
Collapse
Affiliation(s)
- Katherine M Shea
- Department of Maternal and Child Health, School of Public Health, Chapel Hill, NC 27599-1105, USA.
| | | | | | | |
Collapse
|