1
|
Djibrilla ASM, Rabani A, Illyassou KM, Issa SM, Abdourahimou KN, Abdoulkader AH, Aissetou DY. Improving tomatoes quality in the Sahel through organic cultivation under photovoltaic greenhouse as a climate change adaptation and mitigation strategy. Sci Rep 2024; 14:19396. [PMID: 39169040 PMCID: PMC11339430 DOI: 10.1038/s41598-024-54427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 02/13/2024] [Indexed: 08/23/2024] Open
Abstract
Climate change negative impacts on food production systems have forced large scale food producers to make available less healthy products. Although available on the markets, tomatoes are no more tasting as they used to be and providing fewer nutrients compared to then. This study investigates and compares the quality and yield of organic tomatoes (Solanum lycopersicum) produced in an insect net covered photovoltaic greenhouse against ambient production. Plant's physical characteristics were measured, yields and nutrient content were found at harvest, and environmental conditions (temperature, relative humidity, solar irradiance and CO2) were recorded. Plants grew as high as 160 cm inside the greenhouse under an average afternoon temperature of 30.71 °C and a vapor pressure deficit (VPD) of 1.88 kPa against outside plant growth of 72 cm height under averages of 36.04 °C and 3.05 kPa. Although, inside greenhouse tomatoes were physically more attractive and firm with two times healthier tomatoes (98%), 52.39% higher content in protein, 13.31% more minerals and 13.19% more dry matter than outside tomatoes, the yield from outside environment was 4.57 times higher than that of inside due to probably the used crop variety adapted to the harsh climate. Using a crop variety optimum for greenhouse, increasing ventilation and using better fertilizers with enough irrigation could help increase productivity while keeping high fruit quality inside the greenhouse, leading to healthier fruits for food security in the Sahel.
Collapse
Affiliation(s)
- Alio Sanda M Djibrilla
- Faculty of Science and Technique, WASCAL Doctorate Research Program - Climate Change and Energy, AbdouMoumouni University, Niamey, Niger.
- Department of Research and Development, DRAMS, Niamey, Niger.
| | - Adamou Rabani
- Faculty of Science and Technique, WASCAL Doctorate Research Program - Climate Change and Energy, AbdouMoumouni University, Niamey, Niger.
- Department of Chemistry, Faculty of Science and Technique, Abdou Moumouni University, Niamey, Niger.
| | - Karimoun M Illyassou
- Department of Chemistry, Ecole Normale Supérieure, Abdou Moumouni University, Niamey, Niger
| | - Samna Mainassara Issa
- Department of Plant Production, Faculty of Agronomy, Abdou Moumouni University, Niamey, Niger
| | - Koraou N Abdourahimou
- Department of Chemistry, Faculty of Science and Technique, Abdou Moumouni University, Niamey, Niger
| | - Atto H Abdoulkader
- Department of Physics, Faculty of Science and Technique, Abdou Moumouni University, Niamey, Niger
| | - Drame Yaye Aissetou
- Department of Agriculture and Forestry, Faculty of Agronomy, Abdou Moumouni University, Niamey, Niger
- Enterprise in Research and Development, Sahel Agro, Niamey, Niger
| |
Collapse
|
2
|
Guo L, Yu Z, Li Y, Xie Z, Wang G, Liu X, Liu J, Liu J, Jin J. Plant phosphorus acquisition links to phosphorus transformation in the rhizospheres of soybean and rice grown under CO 2 and temperature co-elevation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153558. [PMID: 35124062 DOI: 10.1016/j.scitotenv.2022.153558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 05/27/2023]
Abstract
Climate change is likely to influence the reservoir of soil phosphorus (P) as plants adaptably respond to climate change in the perspective of P acquisition capability via root proliferation and mediating biochemical properties in the rhizosphere to access various soil P fractions. It is particularly important in cropping soils where P fertilizer plus soil P is required to synchronize crop P demand for the production sustainability under climate change. However, few studies have examined the effect of CO2 and temperature co-elevation on plant P acquisition, P fractions and relevant functional genes in the rhizosphere of different crops. Thus, the present study investigated the effect of elevated CO2 and warming on P uptake of soybean and rice grown in Mollisols, and soil P fractions and relevant biochemical properties and microbial functions in the rhizosphere with or without P application. Open-top chambers were used to achieve elevated CO2 of 700 ppm combined with warming (+ 2 °C above ambient temperature). CO2 and temperature co-elevation increased P uptake in soybean by 23% and 28% under the no-P and P application treatments, respectively; and in rice, by 34% and 13%, respectively. CO2 and temperature co-elevation depleted organic P in the rhizosphere of soybean, but increased in the rhizosphere of rice. The phosphatase activity negatively correlated with organic P in the highland soil while positively in the paddy soil. The P mineralization likely occurs in soybean-grown soils under climate change, while the P immobilization in paddy soils. CO2 and temperature co-elevation increased the copy numbers of P functional genes including phoD, phoC, pstS and phnX, in soils with P application. These results indicate that the P application would be requested to satisfy the increased P demand in soybean under climate change, but not in rice in paddy soils where soil P availability is sufficient. Therefore, elevated CO2 and temperature facilitated the crop P uptake via biochemical and microbial pathways, and P functional genes played an essential role in the conversion of P.
Collapse
Affiliation(s)
- Lili Guo
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhihuang Xie
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Judong Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, VIC 3086, Australia.
| |
Collapse
|
3
|
Asemaninejad A, Langley S, Mackinnon T, Spiers G, Beckett P, Mykytczuk N, Basiliko N. Blended municipal compost and biosolids materials for mine reclamation: Long-term field studies to explore metal mobility, soil fertility and microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143393. [PMID: 33213923 DOI: 10.1016/j.scitotenv.2020.143393] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Application of stable soil amendments is often the key to successful phytostabilization and rehabilitation of mine tailings, and microbial guilds are primary drivers of many geochemical processes promoted by these amendments. Field studies were set up at a tailings management area near Sudbury, Ontario to examine performance of blends of lime stabilized municipal biosolids and compost at nine different rates over thick (1 m) municipal compost covers planted with agricultural crops. Based on biogeochemical variability of the substrates four and ten years after application of the initial compost cover, the experimental plots could be classified into three categories: "Low" rate (0-100 t ha-1 biosolids), "Medium" rate (200-800 t ha-1), and "High" rate (1600-3200 t ha-1) treatments. The addition of biosolids materials to the thick compost cover at rates higher than 100 t ha-1 significantly reduced C:N ratio of the substrates, available phosphorus, and some of the nutrient cations, while notably increasing inorganic carbon and the potential solubility of Ni and Cu. This suggests that increasing biosolids application rates may not equivalently ameliorate soil quality and geochemical stability. Correspondingly, microbial communities were altered by biosolids additions, further intensifying the negative impacts of biosolids on long-term efficiency of the initial compost cover. Abundance of cellulose, hemicellulose, and lignocellulose decomposers (as key drivers of mineralization and humification) was significantly reduced by "Medium" and "High" rate treatments. Most DNA sequences with high affinity to denitrifiers were detected in "High" rate treatments where geochemical conditions were optimal for higher microbial denitrification activities. These findings have implications for improving the long-term efficiency of reclamation and environmental management programs in mine tailings of northern temperate climates.
Collapse
Affiliation(s)
- Asma Asemaninejad
- Natural Resources Canada, CanmetMINING, 555 Booth Street, Ottawa, Ontario K1A 0G1, Canada.
| | - Sean Langley
- Natural Resources Canada, CanmetMINING, 555 Booth Street, Ottawa, Ontario K1A 0G1, Canada
| | - Ted Mackinnon
- Natural Resources Canada, CanmetMINING, 555 Booth Street, Ottawa, Ontario K1A 0G1, Canada
| | - Graeme Spiers
- Laurentian University, Vale Living with Lakes Centre, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Laurentian University School of the Environment, Canada
| | - Peter Beckett
- Laurentian University, Vale Living with Lakes Centre, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Laurentian University Department of Biology, Canada
| | - Nadia Mykytczuk
- Laurentian University, Vale Living with Lakes Centre, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Laurentian University School of the Environment, Canada
| | - Nathan Basiliko
- Laurentian University, Vale Living with Lakes Centre, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Laurentian University Department of Biology, Canada
| |
Collapse
|
4
|
Luo CL, Zhang XF, Duan HX, Mburu DM, Ren HX, Kavagi L, Dai RZ, Xiong YC. Dual plastic film and straw mulching boosts wheat productivity and soil quality under the El Nino in semiarid Kenya. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139808. [PMID: 32531596 DOI: 10.1016/j.scitotenv.2020.139808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
The extreme climate events such as El Nino seriously threaten crop production and agro-ecological sustainability because of the aggravated environmental stresses worldwide, particularly in sub-Saharan Africa. To address this issue, we investigated the effects of dual plastic film and straw mulching in ridge-furrow (RF) system on wheat productivity, soil carbon and nitrogen stocks in a semiarid area in Kenya from 2015 to 2017. The experimental site represents a typical semiarid continental monsoon climate, and soil type is chromic vertisols. Field experiment with randomized block design consisted of six RF treatments as follows: 1) dual black plastic film and straw mulching (RFbS), 2) dual transparent plastic film and straw mulching (RFtS), 3) sole black plastic film mulching (RFb), 4) sole transparent plastic mulching RF (RFt), 5) sole straw mulching (RFS) and 6) no mulching (CK). The results indicated that seasonal dynamics of rainfall and air temperature fit in with the weather type of El Nino over four growing seasons. RFbS, RFtS, RFb and RFt significantly increased soil water storage (SWS), topsoil temperature, aboveground biomass, grain yield and water use efficiency across four growing seasons (p < 0.05) as compared with CK. Among all the treatments, RFbS and RFtS achieved the greatest SWS, AgB, grain yield and WUE, owing to improved soil hydro-thermal status in both treatments. Critically, RFbS and RFtS significantly improved soil organic carbon and total nitrogen, soil bulk density and the C:N ratio following four growing seasons, comparing with other treatments (p < 0.05). Besides, RFbS and RFtS gave the highest economic returns among all treatments. For the first time, we found that dual plastic film and straw mulching could serve as a sustainable land management to boost wheat productivity and improve soil quality under El Nino in semiarid areas of SSA.
Collapse
Affiliation(s)
- Chong-Liang Luo
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Feng Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hai-Xia Duan
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - David M Mburu
- Faculty of Agriculture, Jomo Kenyatta University of Agriculture and Technology, P.O. Box Juja, Kenya
| | - Hong-Xu Ren
- The Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing 100093, China
| | - Levis Kavagi
- United Nations Environment Programme, P.O. Box 47074-00100, Nairobi, Kenya
| | - Run-Zi Dai
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - You-Cai Xiong
- State Key Laboratory of Grassland Agro-ecosystems, Institute of Arid Agroecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Lemanowicz J. Dynamics of phosphorus content and the activity of phosphatase in forest soil in the sustained nitrogen compounds emissions zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33773-33782. [PMID: 30276700 PMCID: PMC6245009 DOI: 10.1007/s11356-018-3348-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
This paper summarizes research work on the seasonal and profile dynamics of phosphorus content and the activity of phosphatase in soil next to the nitrogen industry. The results are presented of the total phosphorus (TP) and available phosphorus (AP) content and the alkaline phosphatase (AlP) and acid phosphatase (AcP) against the basic physicochemical properties (clay, pH, total organic carbon, total nitrogen). Three soil profiles were sampled from Brunic Arenosols 0.8, 2.0, and 2.5 km away from the nitrogen plant. The control profile was taken from the Tuchola Forest. The soil was collected in both spring and autumn. The results showed that the total phosphorus content was higher in spring than in autumn (the value of index of changes in time TI < 0) contrary to available phosphorus (TI > 0) and in both seasons in surface soils, the lowest, in profile I. Both total and available phosphorus decreased with depth along the soil profiles. The distribution index (DI) calculated for total phosphorus in surface soils demonstrated a rather moderate accumulation, while DI value for available phosphorus for profile III, a considerable accumulation. The availability factor (AF) for all the soil samples was above the threshold of phosphorus load (2%) in the two seasons in this study (from 2.00 to 10.13% for spring and from 3.92 to 21.19% for autumn), suggesting that the transformation rate from TP to AP was high, and AP supply for plant growth was sufficient. The correlation analysis showed a significant and positive correlation of available phosphorus with soil properties such as total organic carbon (r = 0.577), total nitrogen (r = 0.512), and clay (r = 0.493); however, there was no correlation with the activity of phosphatases.
Collapse
Affiliation(s)
- Joanna Lemanowicz
- Department of Biogeochemistry and Soil Science, Faculty of Agriculture and Biotechnology, UTP University of Science and Technology in Bydgoszcz, 6 Bernardyńska St., 85-029, Bydgoszcz, Poland.
| |
Collapse
|
6
|
Chen W, Niu X, An S, Sheng H, Tang Z, Yang Z, Gu X. Emission and distribution of phosphine in paddy fields and its relationship with greenhouse gases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:952-959. [PMID: 28505887 DOI: 10.1016/j.scitotenv.2017.04.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 04/23/2017] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
Phosphine (PH3), as a gaseous phosphide, plays an important role in the phosphorus cycle in ecosystems. In this study, the emission and distribution of phosphine, carbon dioxide (CO2) and methane (CH4) in paddy fields were investigated to speculate the future potential impacts of enhanced greenhouse effect on phosphorus cycle involved in phosphine by the method of Pearson correlation analysis and multiple linear regression analysis. During the whole period of rice growth, there was a significant positive correlation between CO2 emission flux and PH3 emission flux (r=0.592, p=0.026, n=14). Similarly, a significant positive correlation of emission flux was also observed between CH4 and PH3 (r=0.563, p=0.036, n=14). The linear regression relationship was determined as [PH3]flux=0.007[CO2]flux+0.063[CH4]flux-4.638. No significant differences were observed for all values of matrix-bound phosphine (MBP), soil carbon dioxide (SCO2), and soil methane (SCH4) in paddy soils. However, there was a significant positive correlation between MBP and SCO2 at heading, flowering and ripening stage. The correlation coefficients were 0.909, 0.890 and 0.827, respectively. In vertical distribution, MBP had the analogical variation trend with SCO2 and SCH4. Through Pearson correlation analysis and multiple stepwise linear regression analysis, pH, redox potential (Eh), total phosphorus (TP) and acid phosphatase (ACP) were identified as the principal factors affecting MBP levels, with correlative rankings of Eh>pH>TP>ACP. The multiple stepwise regression model ([MBP]=0.456∗[ACP]+0.235∗[TP]-1.458∗[Eh]-36.547∗[pH]+352.298) was obtained. The findings in this study hold great reference values to the global biogeochemical cycling of phosphorus in the future.
Collapse
Affiliation(s)
- Weiyi Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510640, China.
| | - Shaorong An
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hong Sheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhenghua Tang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhiquan Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaohong Gu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|