1
|
Day MW, Daley C, Wu Y, Pathmaraj M, Verner MA, Caron-Beaudoin É. Altered oxidative stress and antioxidant biomarkers concentrations in pregnant individuals exposed to oil and gas sites in Northeastern British Columbia. Toxicol Sci 2024; 201:73-84. [PMID: 38897649 PMCID: PMC11347777 DOI: 10.1093/toxsci/kfae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Northeastern British Columbia is a region of prolific unconventional oil and gas (UOG) activity. UOG activity can release volatile organic compounds (VOCs) which can elevate oxidative stress and disrupt antioxidant activity in exposed pregnant individuals, potentially increasing the risk of adverse pregnancy outcomes. This study measured biomarkers of oxidative stress and antioxidant activity in pooled urine samples of 85 pregnant individuals living in Northeastern British Columbia, to analyze associations between indoor air VOCs, oil and gas well density and proximity metrics, and biomarker concentrations. Concentrations of catalase, superoxide dismutase (SOD), glutathione S-transferase, total antioxidant capacity, 6-hydroxymelatonin sulfate (aMT6s), malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG), and 8-isoprostane were measured using assay kits. Associations between exposure metrics and biomarker concentrations were determined using multiple linear regression models adjusted for biomarker-specific covariables. UOG proximity was associated with decreased SOD and 8-OHdG. Decreased 8-OHdG was associated with increased proximity to all wells. Decreased aMT6s were observed with increased indoor air hexanal concentrations. MDA was negatively associated with indoor air 1,4-dioxane concentrations. No statistically significant associations were found between other biomarkers and exposure metrics. Although some associations linked oil and gas activity to altered oxidative stress and antioxidant activity, the possibility of chance findings due to the large number of tests cannot be discounted. This study shows that living near UOG wells may alter oxidative stress and antioxidant activity in pregnant individuals. More research is needed to elucidate underlying mechanisms and to what degree UOG activity affects oxidative stress and antioxidant activity.
Collapse
Affiliation(s)
- Matthew W Day
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Coreen Daley
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Yifan Wu
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Maduomethaa Pathmaraj
- Department of Health and Society, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
| | - Marc-André Verner
- Department of Occupational and Environmental Health, School of Public Health, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Centre de Recherche en santé Publique, Université de Montréal et CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, QC H3C 3J7, Canada
| | - Élyse Caron-Beaudoin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
- Department of Health and Society, University of Toronto Scarborough, Scarborough, ON M1C 1A4, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| |
Collapse
|
2
|
Calderon JL, Sorensen C, Lemery J, Workman CF, Linstadt H, Bazilian MD. Managing upstream oil and gas emissions: A public health oriented approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 310:114766. [PMID: 35228168 DOI: 10.1016/j.jenvman.2022.114766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Oil and natural gas are the largest primary global energy sources, and upstream gas emissions from these fuels can impact global climate change and local public health. This paper employs a public health-oriented perspective that reviews grey and academic literature, industry data, technical reports, and policy trends to highlight issues of emissions monitoring. We identify gaps in the existing landscape of emissions reduction strategies and highlight options for addressing them. Policy recommendations include the use of new digital monitoring technologies to better understand causes of emission events, to create data-driven oil and gas regulations, and to begin accurately measuring the volumes of gases released during oil and gas production. Areas for future research relating to emissions and public health impacts are outlined to further enable oil and gas policy discussions.
Collapse
Affiliation(s)
- Jordan L Calderon
- The Payne Institute for Public Policy, Colorado School of Mines, 816 15th St, Golden, CO, USA.
| | - C Sorensen
- School of Medicine, University of Colorado, 13001 East 17th Place, Aurora, CO, USA
| | - J Lemery
- School of Medicine, University of Colorado, 13001 East 17th Place, Aurora, CO, USA
| | - C F Workman
- The Payne Institute for Public Policy, Colorado School of Mines, 816 15th St, Golden, CO, USA
| | - H Linstadt
- School of Medicine, University of Colorado, 13001 East 17th Place, Aurora, CO, USA
| | - M D Bazilian
- The Payne Institute for Public Policy, Colorado School of Mines, 816 15th St, Golden, CO, USA
| |
Collapse
|
3
|
Residential proximity to hydraulically fractured oil and gas wells and adverse birth outcomes in urban and rural communities in California (2006-2015). Environ Epidemiol 2021; 5:e172. [PMID: 34909552 PMCID: PMC8663888 DOI: 10.1097/ee9.0000000000000172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background: Prenatal exposure to hydraulic fracturing (HF), a chemically intensive oil and gas extraction method, may be associated with adverse birth outcomes, but no health studies have been conducted in California. Methods: We conducted a retrospective cohort study of 979,961 births to mothers in eight California counties with HF between 2006 and 2015. Exposed individuals had at least 1 well hydraulically fractured within 1 km of their residence during pregnancy; the reference population had no wells within 1 km, but at least one oil/gas well within 10 km. We examined associations between HF and low birth weight (LBW), preterm birth (PTB), small for gestational age birth (SGA), and term birth weight (tBW) using generalized estimating equations and assessing urban-rural effect modification in stratified models. Results: Fewer than 1% of mothers (N = 1,192) were exposed to HF during pregnancy. Among rural mothers, HF exposure was associated with increased odds of LBW (odds ratio [OR] = 1.74; 95% confidence interval [CI] = 1.10, 2.75), SGA (OR = 1.68; 95% CI = 1.42, 2.27) and PTB (OR = 1.17; 95% CI = 0.64, 2.12), and lower tBW (mean difference: –73 g; 95% CI = –131, –15). Among urban mothers, HF exposure was positively associated with SGA (OR = 1.23; 95% CI = 0.98, 1.55), inversely associated with LBW (OR = 0.83; 95% CI = 0.63, 1.07) and PTB (OR = 0.65; 95% CI = 0.48, 0.87), and not associated with tBW (mean difference: –2 g; 95% CI = –35, 31). Conclusion: HF proximity was associated with adverse birth outcomes, particularly among rural Californians.
Collapse
|
4
|
Di Gilio A, Palmisani J, Petraccone S, de Gennaro G. A sensing network involving citizens for high spatio-temporal resolution monitoring of fugitive emissions from a petroleum pre-treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148135. [PMID: 34118667 DOI: 10.1016/j.scitotenv.2021.148135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
In this study an innovative sensing network consisting of eight photoionization detectors, meteorological sensors, a video camera and a telephonic system able to systematize the population complaints was developed for the monitoring of odor emissions. The development of monitoring approaches with high temporal and spatial resolution and actively involving citizens, is strategic in areas where relevant and also short-term emissive events frequently occur and the conventional approaches fail due to the high variability of fugitive emissions. Moreover, even if unpleasant odors are not necessarily direct triggers of health effects, they could be associated with the release of other harmful compounds. Monitoring approaches also involving citizens are thus strategic tools because odors annoyance perceived by population may be a potential health risk warning. Therefore, the developed sensing network was set up in Val d'Agri (Basilicata, Italy) where a petroleum pre-treatment plant (COVA) rises in a rural and inhabited area. The data collected during the monitoring campaign from the 16th February to the 30th July 2017, showed Total Volatile Organic Compounds (TVOCs) concentrations decreasing moving away from the plant and up to five times higher than levels registered in the closest municipality (Viggiano). Moreover, recurrent short-term critical events characterized by concentration values far above the average of the period and with maximum values ranging from 0.92 to 1.89 ppm, were registered in correspondence with high levels of benzene (up to 23.9 μg/m3) and anemometric conditions able to transport pollutants from COVA to each receptor site. The spatial and temporal distribution of TVOC concentrations proved to be affected by the distance from COVA, wind direction and industrial activities verified using video reportage and citizen claims. Therefore, the developed approach has proven to be a useful tool to credit people's perception of odors and also to quantify citizen exposure to VOCs during short-term events.
Collapse
Affiliation(s)
- Alessia Di Gilio
- Biology Department, University of Bari, via Orabona, 4, 70126 Bari, Italy.
| | - Jolanda Palmisani
- Biology Department, University of Bari, via Orabona, 4, 70126 Bari, Italy.
| | | | | |
Collapse
|
5
|
Long CM, Briggs NL, Cochran BA, Mims DM. Health-based evaluation of ambient air measurements of PM 2.5 and volatile organic compounds near a Marcellus Shale unconventional natural gas well pad site and a school campus. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:614-627. [PMID: 33619364 PMCID: PMC8263344 DOI: 10.1038/s41370-021-00298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Limited air monitoring studies with long-term measurements during all phases of development and production of natural gas and natural gas liquids have been conducted in close proximity to unconventional natural gas well pads. OBJECTIVE Conducted in an area of Washington County, Pennsylvania, with extensive Marcellus Shale development, this study investigated whether operations at an unconventional natural gas well pad may contribute to ambient air concentrations of potential health concern at a nearby school campus. METHODS Almost 2 years of air monitoring for fine particulate matter (PM2.5) and volatile organic compounds (VOCs) was performed at three locations between 1000 and 2800 feet from the study well pad from December 2016 to October 2018. PM2.5 was measured continuously at one of the three sites using a beta attenuation monitor, while 24-h stainless steel canister samples were collected every 6 days at all sites for analysis of 58 VOCs. RESULTS Mean PM2.5 concentrations measured during the different well activity periods ranged from 5.4 to 9.5 μg/m3, with similar levels and temporal changes as PM2.5 concentrations measured at a regional background location. The majority of VOCs were either detected infrequently or not at all, with measurements for a limited number of VOCs indicating the well pad to be a source of small and transient contributions. SIGNIFICANCE All measurement data of PM2.5 and 58 VOCs, which reflect the cumulative contributions of emissions from the study well pad and other local/regional air pollutant sources (e.g., other well pads), were below health-based air comparison values, and thus do not provide evidence of either 24-hour or long-term air quality impacts of potential health concern at the school.
Collapse
|
6
|
Tran KV, Casey JA, Cushing LJ, Morello-Frosch R. Residential Proximity to Oil and Gas Development and Birth Outcomes in California: A Retrospective Cohort Study of 2006-2015 Births. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:67001. [PMID: 32490702 PMCID: PMC7268907 DOI: 10.1289/ehp5842] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Studies suggest associations between oil and gas development (OGD) and adverse birth outcomes, but few epidemiological studies of oil wells or inactive wells exist, and none in California. OBJECTIVE Our study aimed to investigate the relationship between residential proximity to OGD and birth outcomes in California. METHODS We conducted a retrospective cohort study of 2,918,089 births to mothers living within 10 km of at least one production well between January 1, 2006 and December 31, 2015. We estimated exposure during pregnancy to inactive wells count (no inactive wells, 1 well, 2-5 wells, 6+ wells) and production volume from active wells in barrels of oil equivalent (BOE) (no BOE, 1-100 BOE/day, >100 BOE/day). We used generalized estimating equations to examine associations between overall and trimester-specific OGD exposures and term birth weight (tBW), low birth weight (LBW), preterm birth (PTB), and small for gestational age birth (SGA). We assessed effect modification by urban/rural community type. RESULTS Adjusted models showed exposure to active OGD was associated with adverse birth outcomes in rural areas; effect estimates in urban areas were close to null. In rural areas, increasing production volume was associated with stronger adverse effect estimates. High (>100 BOE/day) vs. no production throughout pregnancy was associated with increased odds of LBW [odds ratio (OR)=1.40, 95% confidence interval (CI): 1.14, 1.71] and SGA (OR=1.22, 95% CI: 1.02, 1.45), and decreased tBW (mean difference = -36 grams, 95% CI: -54, -17), but not with PTB (OR=1.03, 95% CI: 0.91, 1.18). CONCLUSION Proximity to higher production OGD in California was associated with adverse birth outcomes among mothers residing in rural areas. Future studies are needed to confirm our findings in other populations and improve exposure assessment measures. https://doi.org/10.1289/EHP5842.
Collapse
Affiliation(s)
- Kathy V Tran
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, California, USA
| | - Joan A Casey
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, California, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Lara J Cushing
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
- Department of Health Education, San Francisco State University, San Francisco, California, USA
| | - Rachel Morello-Frosch
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, California, USA
- Department of Environmental Science, Policy and Management University of California, Berkeley, California, USA
| |
Collapse
|
7
|
Assessing Agreement in Exposure Classification between Proximity-Based Metrics and Air Monitoring Data in Epidemiology Studies of Unconventional Resource Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173055. [PMID: 31443587 PMCID: PMC6747456 DOI: 10.3390/ijerph16173055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
Recent studies of unconventional resource development (URD) and adverse health effects have been limited by distance-based exposure surrogates. Our study compared exposure classifications between air pollutant concentrations and “well activity” (WA) metrics, which are distance-based exposure proxies used in Marcellus-area studies to reflect variation in time and space of residential URD activity. We compiled Pennsylvania air monitoring data for benzene, carbon monoxide, nitrogen dioxide, ozone, fine particulates and sulfur dioxide, and combined this with data on nearly 9000 Pennsylvania wells. We replicated WA calculations using geo-coordinates of monitors to represent residences and compared exposure categories from air measurements and WA at the site of each monitor. There was little agreement between the two methods for the pollutants included in the analysis, with most weighted kappa coefficients between −0.1 and 0.1. The exposure categories agreed for about 25% of the observations and assigned inverse categories 16%–29% of the time, depending on the pollutant. Our results indicate that WA measures did not adequately distinguish categories of air pollutant exposures and employing them in epidemiology studies can result in misclassification of exposure. This underscores the need for more robust exposure assessment in future analyses and cautious interpretation of these existing studies.
Collapse
|
8
|
Haynes EN, Hilbert TJ, Roberts R, Quirolgico J, Shepler R, Beckner G, Veevers J, Burkle J, Jandarov R. Public Participation in Air Sampling and Water Quality Test Kit Development to Enable Citizen Science. Prog Community Health Partnersh 2019; 13:141-151. [PMID: 31178449 DOI: 10.1353/cpr.2019.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Public participation in environmental data collection is a rapidly growing approach providing opportunity for hands-on public engagement in environmental field studies. This methodology is important when addressing community-identified exposure concerns. OBJECTIVES Our goal was to establish an academic-community partnership between University of Cincinnati (UC) researchers and local officials and residents of Guernsey County, Ohio, to address their interest in assessing environmental quality near proposed and operating natural gas extraction (NGE) waste sites. METHODS A pilot research study was developed using community-based participatory research principles. A community resident was trained to collect air samples. Air was sampled at 10 locations for 63 volatile organic compounds (VOCs). Water quality test kits were developed in partnership with local middle and high school teachers. RESULTS Community partners were involved throughout the project. VOCs were detected at all locations. Nineteen unique VOCs were detected; one was above the recommended exposure level. Findings were reported back to local officials and community members. Water quality test kits were developed and then piloted in middle school and high school classrooms. CONCLUSIONS Academic-community partnerships were instrumental in the identification of sampling locations, obtaining the participation of landowners, and conducting sampling. Measuring the impact of NGE activities on air quality is challenging owing to competing exposures, limited resources, and access to sites. Water quality test kits were found by Guernsey County teachers to be useful tools in the classroom.
Collapse
|
9
|
Long CM, Briggs NL, Bamgbose IA. Synthesis and health-based evaluation of ambient air monitoring data for the Marcellus Shale region. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:527-547. [PMID: 30698507 DOI: 10.1080/10962247.2019.1572551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
In recent years, there has been a marked increase in the amount of ambient air quality data collected near Marcellus Shale oil and gas development (OGD) sites. We integrated air measurement data from over 30 datasets totaling approximately 200 sampling locations nearby to Marcellus Shale development sites, focusing on 11 air pollutants that can be associated with OGD operations: fine particulate matter (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), acetaldehyde, benzene, ethylbenzene, formaldehyde, n-hexane, toluene, xylenes, and hydrogen sulfide (H2S). We evaluated these data to determine whether there is evidence of community-level air quality impacts of potential health concern, making screening-level comparisons of air monitoring data with acute and chronic health-based air comparison values (HBACVs). Based on the available air monitoring data, we found that only a small fraction of measurements exceeded HBACVs, which is similar to findings from integrative air quality assessments for other shale gas plays. Therefore, the data indicate that air pollutant levels within the Marcellus Shale development region typically are below HBACV exceedance levels; however, the sporadic HBACV exceedances warrant further investigation to determine whether they may be related to specific site characteristics, or certain operations or sources. Like any air monitoring dataset, there is uncertainty as to how well the available Marcellus Shale air monitoring data characterize the range of potential exposures for people living nearby to OGD sites. Given the lesser amounts of air monitoring data available for locations within 1,000 feet of OGD sites as compared to locations between 0.2 and 1 miles, the presence of potential concentration hotspots cannot be ruled out. Additional air monitoring data, in particular more real-time data to further characterize short-term peak concentrations associated with episodic events, are needed to provide for more refined assessments of potential health risks from Marcellus Shale development. Implications: While there is now a sizable amount of ambient air monitoring data collected nearby to OGD activities in the Marcellus Shale region, these data are currently scattered among different databases and studies. As part of an integrative assessment of Marcellus Shale air quality impacts, ambient air data are compiled for a subset of criteria air pollutants and hazardous air pollutants that have been associated with OGD activities, and compared to acute and chronic health-based air comparison values to help assess the air-related public health impacts of Marcellus Shale development.
Collapse
|
10
|
Garcia-Gonzales DA, Shonkoff SB, Hays J, Jerrett M. Hazardous Air Pollutants Associated with Upstream Oil and Natural Gas Development: A Critical Synthesis of Current Peer-Reviewed Literature. Annu Rev Public Health 2019; 40:283-304. [DOI: 10.1146/annurev-publhealth-040218-043715] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Increased energy demands and innovations in upstream oil and natural gas (ONG) extraction technologies have enabled the United States to become one of the world's leading producers of petroleum and natural gas hydrocarbons. The US Environmental Protection Agency (EPA) lists 187 hazardous air pollutants (HAPs) that are known or suspected to cause cancer or other serious health effects. Several of these HAPs have been measured at elevated concentrations around ONG sites, but most have not been studied in the context of upstream development. In this review, we analyzed recent global peer-reviewed articles that investigated HAPs near ONG operations to ( a) identify HAPs associated with upstream ONG development, ( b) identify their specific sources in upstream processes, and ( c) examine the potential for adverse health outcomes from HAPs emitted during these phases of hydrocarbon development.
Collapse
Affiliation(s)
- Diane A. Garcia-Gonzales
- Environmental Health Sciences Division, School of Public Health, University of California, Berkeley, California 94720, USA
| | - Seth B.C. Shonkoff
- PSE Healthy Energy, Oakland, California 94612, USA;,
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA
- Environment Energy Technology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jake Hays
- PSE Healthy Energy, Oakland, California 94612, USA;,
- Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Michael Jerrett
- Department of Environmental Health Sciences and Center for Occupational and Environmental Health, Fielding School of Public Health, University of California, Los Angeles, California 90095-1772, USA
| |
Collapse
|
11
|
Denham A, Willis M, Zavez A, Hill E. Unconventional natural gas development and hospitalizations: evidence from Pennsylvania, United States, 2003-2014. Public Health 2019; 168:17-25. [PMID: 30677623 DOI: 10.1016/j.puhe.2018.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/23/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To examine relationships between short-term and long-term exposures to unconventional natural gas development, commonly known as fracking, and county hospitalization rates for a variety of broad disease categories. STUDY DESIGN This is an ecological study based on county-level data for Pennsylvania, United States, 2003-2014. METHODS We estimated multivariate regressions with county and year fixed effects, using two 12-year panels: all 67 Pennsylvania counties and 54 counties that are not large metropolitan. RESULTS After correcting for multiple comparisons, we found a positive association of cumulative well density (per km2) with genitourinary hospitalization rates. When large metropolitan counties were excluded, this relationship persisted, and positive associations of skin-related hospitalization rates with cumulative well count and well density were observed. The association with genitourinary hospitalization rates is driven by females in 20-64 years group, particularly for kidney infections, calculus of ureter, and urinary tract infection. Contemporaneous wells drilled were not significantly associated with hospitalizations after adjustment for multiple comparisons. CONCLUSIONS Our study shows that long-term exposure to unconventional gas development may have an impact on prevalence of hospitalizations for certain diseases in the affected populations and identifies areas of future research on unconventional gas development and health.
Collapse
Affiliation(s)
- A Denham
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, 265 Crittenden Blvd, Rochester, NY, 14642, United States
| | - M Willis
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, United States
| | - A Zavez
- Department of Biostatistics and Computational Biology, School of Medicine and Dentistry, University of Rochester, United States
| | - E Hill
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, 265 Crittenden Blvd, Rochester, NY, 14642, United States.
| |
Collapse
|
12
|
Willis MD, Jusko TA, Halterman JS, Hill EL. Unconventional natural gas development and pediatric asthma hospitalizations in Pennsylvania. ENVIRONMENTAL RESEARCH 2018; 166:402-408. [PMID: 29936288 PMCID: PMC6110967 DOI: 10.1016/j.envres.2018.06.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Pediatric asthma is a common chronic condition that can be exacerbated by environmental exposures, and unconventional natural gas development (UNGD) has been associated with decreased community air quality. This study aims to quantify the association between UNGD and pediatric asthma hospitalizations. METHODS We compare pediatric asthma hospitalizations among zip codes with and without exposure to UNGD between 2003 and 2014 using a difference-in-differences panel analysis. Our UNGD exposure metrics include cumulative and contemporaneous drilling as well as reported air emissions by site. RESULTS We observed consistently elevated odds of hospitalizations in the top tertile of pediatric patients exposed to unconventional drilling compared with their unexposed peers. During the same quarter a well was drilled, we find a 25% increase (95% CI: 1.07, 1.47) in the odds of being hospitalized for asthma. Ever-establishment of an UNGD well within a zip code was associated with a 1.19 (95% CI: 1.04, 1.36) increased odds of a pediatric asthma hospitalization. Our results further demonstrate that increasing specific air emissions from UNGD sites are associated with increased risks of pediatric asthma hospitalizations (e.g. 2,2,4-trimethylpentane, formaldehyde, x-hexane). These results hold across multiple age groups and sensitivity analyses. CONCLUSIONS Community-level UNGD exposure metrics were associated with increased odds of pediatric asthma-related hospitalization among young children and adolescents. This study provides evidence that additional regulations may be necessary to protect children's respiratory health from UNGD activities.
Collapse
Affiliation(s)
- Mary D Willis
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Todd A Jusko
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jill S Halterman
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Elaine L Hill
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA; Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|