1
|
Tironi LS, Carletto LB, Silva EO, Schripsema J, Luiz JHH. Endophytic Fungi Co-Culture: An Alternative Source of Antimicrobial Substances. Microorganisms 2024; 12:2413. [PMID: 39770616 PMCID: PMC11677400 DOI: 10.3390/microorganisms12122413] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Antimicrobial resistance is becoming a critical issue due to the widespread and indiscriminate use of antibiotics and antifungals to treat common infections, leading to a growing shortage of effective drugs. Moreover, the increase in antimicrobial resistance is enhancing the pathogenicity and virulence of various pathogens. Microorganisms are key sources of chemically diverse specialized metabolites, which are produced in the final stages of their growth cycle. These metabolites hold significant value in chemical, pharmaceutical, and agrochemical industries. One of the major challenges researchers face in this field is the frequent isolation of already-known substances when classical protocols are used. To address this, several innovative strategies have been developed. The co-culture approach is a powerful tool for activating silent biosynthetic gene clusters, as it simulates natural microbial environments by creating artificial microbial communities. This method has shown promising results, with new compounds being isolated and the yields of target substances being improved. In this context, this review provides examples of antimicrobial compounds obtained from co-cultures of endophytic fungi, conducted in both liquid and solid media. Additionally, the review discusses the advantages and challenges of the co-culture technique. Significance and Impact of the Study: Microbial co-culture is a valuable strategy for discovering new natural products with antimicrobial activity, as well as for scaling up the production of target substances. This review aims to summarize important examples of endophyte co-cultures and highlights the potential of endophytic fungi co-culture for pharmacological applications.
Collapse
Affiliation(s)
- Lucas Silva Tironi
- Institute of Chemistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (L.S.T.); (L.B.C.)
| | - Lucilene Bento Carletto
- Institute of Chemistry, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (L.S.T.); (L.B.C.)
| | - Eliane Oliveira Silva
- Department of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Salvador 40170-115, BA, Brazil;
| | - Jan Schripsema
- Metabolomics Group, Laboratory of Chemical Sciences, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes 28013-602, RJ, Brazil
| | | |
Collapse
|
2
|
Polli AD, Oliveira Junior VAD, Ribeiro MADS, Polonio JC, Rosini B, Oliveira JADS, Bini RD, Golias HC, Fávaro-Polonio CZ, Orlandelli RC, Vicentini VEP, Cotica LF, Peralta RM, Pamphile JA, Azevedo JL. Synthesis, characterization, and reusability of novel nanobiocomposite of endophytic fungus Aspergillus flavus and magnetic nanoparticles (Fe 3O 4) with dye bioremediation potential. CHEMOSPHERE 2023; 340:139956. [PMID: 37640209 DOI: 10.1016/j.chemosphere.2023.139956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/14/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The incorrect disposal of textile dyes, such as Reactive Black 5 (RB5), causes several problems for living beings and the quality of the environment. Nanobiocomposites (NBC) produced from endophytic fungi (potentially remediation dyes-agents) and magnetic nanoparticles have high biotechnological potential due to their superparamagnetic behavior, which would allow their recovery through the magnetic field after the bioremediation process. This work aimed to obtain a new nanobiocomposite from the interaction of magnetite nanoparticles (Fe3O4) with the endophyte Aspergillus flavus (Af-CL-7) to evaluate its bioremediation capacity and to reduce the toxicity of RB5 and its reuse. Before obtaining the NBC, Af-CL-7 showed discoloration of RB5 and it was tolerant to all tested concentrations of this dye. The discovery of the nanobiocomposite textile dye bioremediator product presents a significant environmental advantage by addressing the issue of water pollution caused by textile dyes. The NBC called Af-Fe3O4 was successfully obtained with the magnetized endophyte, and their magnetic properties were verified by VSM analysis and by action of magnetic fields generated by Nd-Fe-B magnets SEM analyzes showed that the nanoparticles did not cause any damage to the hypha morphology, and TEM analyzes confirmed the presence of nanoparticles in the fungus wall and also inside the cell. The NBC Af-Fe3O4 and Af-CL-7 showed, respectively, 96.1% and 92.2% of RB5 discoloration in the first use, 91.1% e 86.2% of discoloration in the validation test, and 89.0% in NBC reuse. In the toxicological bioassay with Lactuca sativa seeds, NBC showed a positive reduction in the toxicity of RB5 after treatment, allowing the hypocotyl growth to be statistically similar to the control with water. Thus, we highlight the promising obtaining process of NBC that could be applied in bioremediation of contaminated waters, wherein the industrial economic cost will depend on the fermentation efficiency, biomass production and nanoparticle synthesis.
Collapse
Affiliation(s)
- Andressa Domingos Polli
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Verci Alves de Oliveira Junior
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Marcos Alessandro Dos Santos Ribeiro
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Julio Cesar Polonio
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil.
| | - Bianca Rosini
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | - João Arthur Dos Santos Oliveira
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | | | - Halison Correia Golias
- Academic Department of Humanities, Federal Technological University of Paraná, Apucarana, Paraná, Brazil
| | - Cintia Zani Fávaro-Polonio
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Ravely Casarotti Orlandelli
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | | | | | | | - João Alencar Pamphile
- Laboratory of Microbial Biotechnology. Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, 87020-900, Maringá, Paraná, Brazil
| | - João Lúcio Azevedo
- Department of Genetics, College of Agriculture "Luiz de Queiroz", University of São Paulo, 13418-900, Piracicaba, São Paulo, Brazil
| |
Collapse
|
3
|
Hoyos LV, Chaves A, Grandezz D, Medina A, Correa J, Ramirez-Castrillon M, Valencia D, Caicedo-Ortega NH. Systematic screening strategy for fungal laccase activity of endophytes from Otoba gracilipes with bioremediation potential. Fungal Biol 2023; 127:1298-1311. [PMID: 37821152 DOI: 10.1016/j.funbio.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 10/13/2023]
Abstract
Fungal laccases are promising for biotechnological applications, including bioremediation and dye biotransformation, due to their high redox potential and broad substrate specificity. However, current bioprospecting methods for identifying laccase-producing fungi can be challenging and time-consuming. For early detection, it was developed a three-step, multi-criteria weighting system that evaluates fungal strains based on: First, the biotransformation capacity of three dyes (i.e., Congo red, brilliant blue G-250, and malachite green), at three different pH values, and with a relative weighting supported for the redox potential of each colorant. The relative decolorization coefficient (RDC), used as th2e first classification criterion, expressed their potential performance. Second, under the same conditions, laccase activity was estimated by observing the different degrees of oxidation of a given substrate. The selection criterion was the relative oxidation coefficient (ROC). Finally, laccase activity was quantified in submerged fermentations using three inducers (i.e., loofah sponge, Tween 80, and veratyl alcohol). This multicriteria screening strategy evaluated sixteen isolated endophytic fungal strains from Otoba gracilipes. The system identified Beltraniopsis sp. ET-17 (at pH values of 5.00 and 5.50) as a promising strain for dye biotransformation, and Phlebia floridensis as the best laccase producer, achieving a high activity of 116 μmol min-1 L-1 with loofah sponge as an inducer. In-vitro testing confirmed the efficacy of P. floridensis, with 53.61 % decolorization of a dye mixture (brilliant blue-Congo red. ratio 1:1) after 15 days of incubation. Thus, with the proposed screening strategy it was possible to highlight two species of interest at an early bioprospecting stage on a Colombian native tree poorly explored.
Collapse
Affiliation(s)
- Laura V Hoyos
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Amada Chaves
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Daniela Grandezz
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Allison Medina
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Jhonatan Correa
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Mauricio Ramirez-Castrillon
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia
| | - Drochss Valencia
- Omicas Program, Pontificia Universidad Javeriana sede Cali, Calle 18 No. 118-250, Cali, C.P. 760031, Colombia
| | - Nelson H Caicedo-Ortega
- Departamento Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali, Colombia; Centro BioInc, Universidad Icesi, Cali, Colombia.
| |
Collapse
|
4
|
Islam T, Repon MR, Islam T, Sarwar Z, Rahman MM. Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:9207-9242. [PMID: 36459315 DOI: 10.1007/s11356-022-24398-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The rapid growth of population and industrialization have intensified the problem of water pollution globally. To meet the challenge of industrialization, the use of synthetic dyes in the textile industry, dyeing and printing industry, tannery and paint industry, paper and pulp industry, cosmetic and food industry, dye manufacturing industry, and pharmaceutical industry has increased exponentially. Among these industries, the textile industry is prominent for the water pollution due to the hefty consumption of water and discharge of coloring materials in the effluent. The discharge of this effluent into the aquatic reservoir affects its biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS), total suspended solids (TSS), and pH. The release of the effluents without any remedial treatment will generate a gigantic peril to the aquatic ecosystem and human health. The ecological-friendly treatment of the dye-containing wastewater to minimize the detrimental effect on human health and the environment is the need of the hour. The purpose of this review is to evaluate the catastrophic effects of textile dyes on human health and the environment. This review provides a comprehensive insight into the dyes and chemicals used in the textile industry, focusing on the typical treatment processes for their removal from industrial wastewaters, including chemical, biological, physical, and hybrid techniques.
Collapse
Affiliation(s)
- Tarekul Islam
- Department of Textile Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
| | - Md Reazuddin Repon
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh.
- Department of Textile Engineering, Khwaja Yunus Ali University, Sirajgang, 6751, Bangladesh.
- Department of Production Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentų 56, 51424, Kaunas, Lithuania.
| | - Tarikul Islam
- ZR Research Institute for Advanced Materials, Sherpur, 2100, Bangladesh
- Department of Textile Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Zahid Sarwar
- School of Engineering and Technology, National Textile University, Faisalabad, Pakistan
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) &, Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
5
|
Köktürk M. In vivo toxicity assessment of Remazol Gelb-GR (RG-GR) textile dye in zebrafish embryos/larvae (Danio rerio): Teratogenic effects, biochemical changes, immunohistochemical changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158473. [PMID: 36063928 DOI: 10.1016/j.scitotenv.2022.158473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Dyes, which are very important for various industries, have very adverse effects on the aquatic environment and aquatic life. However, there are limited studies on the toxic properties of dyes on living things. This research elucidated the sublethal toxicity of acute exposure of the textile dye remazol gelb-GR (RG-GR) using zebrafish embryos and larvae for 96 h. The 96 h-LC50 for RG-GR in zebrafish embryos/larvae was determined to be 151.92 mg/L. Sublethal 96 hpf exposure was performed in RG-GR concentrations (0.5; 1.0; 10.0; 100.0 mg/L) to determine the development of toxicity in zebrafish embryos/larvae. RG-GR dye affected morphological development, and decreased heart rate, hatching, blood flow, and survival rates in zebrafish embryos/larvae. The immunopositivity of 8-hydroxy 2 deoxyguanosine (8-OHdG) in larvae exposed to RG-GR at high concentrations was found to be intense. Depending on the RG-GR dose increase, some biochemical parameters such as glutathione peroxidase (GSH) level, acetylcholinesterase (AChE) activity, catalase (CAT) activities, superoxide dismutase (SOD), and nuclear factor erythroid 2 (Nrf-2) levels were detected to be decreased in larvae, while malondialdehyde (MDA) content, nuclear factor kappa (NF-kB), tumor necrosis factor-α (TNF-α), DNA damage (8-OHdG level), interleukin-6 (IL-6) and apoptosis (Caspase-3) levels were found to be increased. The experimental results revealed that RG-GR dye has high acute toxicity on zebrafish embryo/larvae.
Collapse
Affiliation(s)
- Mine Köktürk
- Department of Organic Agriculture Management, Faculty of Applied Sciences, Igdir University, TR-76000, Igdir, Turkey; Research Laboratory Application and Research Center (ALUM), Igdir University, TR-76000 Igdir, Turkey.
| |
Collapse
|
6
|
Evaluation of Congo red dye decolorization and degradation potential of an endophyte Colletotrichum gloeosporioides isolated from Thevetia peruviana (Pers.) K. Schum. Folia Microbiol (Praha) 2022; 68:381-393. [DOI: 10.1007/s12223-022-01017-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/13/2022] [Indexed: 11/27/2022]
|
7
|
Mattoo AJ, Nonzom S. Endophytes in Lignin Valorization: A Novel Approach. Front Bioeng Biotechnol 2022; 10:895414. [PMID: 35928943 PMCID: PMC9343868 DOI: 10.3389/fbioe.2022.895414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Lignin, one of the essential components of lignocellulosic biomass, comprises an abundant renewable aromatic resource on the planet earth. Although 15%––40% of lignocellulose pertains to lignin, its annual valorization rate is less than 2% which raises the concern to harness and/or develop effective technologies for its valorization. The basic hindrance lies in the structural heterogeneity, complexity, and stability of lignin that collectively makes it difficult to depolymerize and yield common products. Recently, microbial delignification, an eco-friendly and cheaper technique, has attracted the attention due to the diverse metabolisms of microbes that can channelize multiple lignin-based products into specific target compounds. Also, endophytes, a fascinating group of microbes residing asymptomatically within the plant tissues, exhibit marvellous lignin deconstruction potential. Apart from novel sources for potent and stable ligninases, endophytes share immense ability of depolymerizing lignin into desired valuable products. Despite their efficacy, ligninolytic studies on endophytes are meagre with incomplete understanding of the pathways involved at the molecular level. In the recent years, improvement of thermochemical methods has received much attention, however, we lagged in exploring the novel microbial groups for their delignification efficiency and optimization of this ability. This review summarizes the currently available knowledge about endophytic delignification potential with special emphasis on underlying mechanism of biological funnelling for the production of valuable products. It also highlights the recent advancements in developing the most intriguing methods to depolymerize lignin. Comparative account of thermochemical and biological techniques is accentuated with special emphasis on biological/microbial degradation. Exploring potent biological agents for delignification and focussing on the basic challenges in enhancing lignin valorization and overcoming them could make this renewable resource a promising tool to accomplish Sustainable Development Goals (SDG’s) which are supposed to be achieved by 2030.
Collapse
Affiliation(s)
| | - Skarma Nonzom
- *Correspondence: Skarma Nonzom, , orcid.org/0000-0001-9372-7900
| |
Collapse
|
8
|
Endophytic fungal communities and their biotechnological implications for agro-environmental sustainability. Folia Microbiol (Praha) 2022; 67:203-232. [PMID: 35122218 DOI: 10.1007/s12223-021-00939-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023]
Abstract
Endophytic fungal communities have attracted a great attention to chemists, ecologists, and microbiologists as a treasure trove of biological resource. Endophytic fungi play incredible roles in the ecosystem including abiotic and biotic stress tolerance, eco-adaptation, enhancing growth and development, and maintaining the health of their host. In recent times, endophytic fungi have drawn a special focus owing to their indispensable diversity, unique distribution, and unparalleled metabolic pathways. The endophytic fungal communities belong to three phyla, namely Mucoromycota, Basidiomycota, and Ascomycota with seven predominant classes Agaricomycetes, Dothideomycetes, Eurotiomycetes, Mortierellomycotina, Mucoromycotina, Saccharomycetes, and Sordariomycetes. In a review of a huge number of research finding, it was found that endophytic fungal communities of genera Aspergillus, Chaetomium, Fusarium, Gaeumannomyces, Metarhizium, Microsphaeropsis, Paecilomyces, Penicillium, Piriformospora, Talaromyces, Trichoderma, Verticillium, and Xylaria have been sorted out and well characterized for diverse biotechnological applications for future development. Furthermore, these communities are remarkable source of novel bioactive compounds with amazing biological activity for use in agriculture, food, and pharmaceutical industry. Endophytes are endowed with a broad range of structurally unique bioactive natural products, including alkaloids, benzopyranones, chinones, flavonoids, phenolic acids, and quinines. Subsequently, there is still an excellent opportunity to explore novel compounds from endophytic fungi among numerous plants inhabiting different niches. Furthermore, high-throughput sequencing could be a tool to study interaction between plants and endophytic fungi which may provide further opportunities to reveal unknown functions of endophytic fungal communities. The present review deals with the biodiversity of endophytic fungal communities and their biotechnological implications for agro-environmental sustainability.
Collapse
|
9
|
Electrochemical Degradation and Degree of Mineralization of the BY28 Dye in a Supporting Electrolyte Mixture Using an Expanded Dimensionally Stable Anode. Electrocatalysis (N Y) 2021. [DOI: 10.1007/s12678-021-00680-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Goud BS, Cha HL, Koyyada G, Kim JH. Augmented Biodegradation of Textile Azo Dye Effluents by Plant Endophytes: A Sustainable, Eco-Friendly Alternative. Curr Microbiol 2020; 77:3240-3255. [PMID: 32951066 DOI: 10.1007/s00284-020-02202-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/04/2020] [Indexed: 01/02/2023]
Abstract
Textile industry consumes a large proportion of available water and releases huge amounts of toxic azo dye effluents, leading to an inevitable situation of acute environmental pollution that has been a significant threat to mankind. Decolorization or detoxification of harmful azo dyes has become a global priority to overcome the disastrous consequences and salvage the ecosystem. Biodegradation of textile azo dyes by endophytes stands to be a lucrative and viable alternative over conventional physico-chemical methods, owing to their eco-friendliness, cost-competitive and non-toxic nature. Especially, plant endophytic microbes exhibit promising biodegradation potential which has wired up the effective removal of textile azo dyes, attributing to their ability to produce dye degrading enzymes, laccases, peroxidases and azoreductases. Although both bacterial and fungal endophytes have been tried for azo dye degradation, endophytic fungi find broader application over bacteria. Despite of the advancements made in microbe-mediated biodegradation, there is still a need to fill the gap in lab to in situ translation of biodegradation research. This review concisely accentuates the xenobiotics of textile azo dyes and microbial mechanisms of biodegradation of textile azo dyes, positing plant endophytic community, especially bacterial and fungal endophytes as the potential dye degraders, highlighting currently reported dye degrading endophytic species.
Collapse
Affiliation(s)
- Burragoni Sravanthi Goud
- Department of Biotechnology, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
| | - Ha Lim Cha
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea
| | - Ganesh Koyyada
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
| | - Jae Hong Kim
- Department of Chemical Engineering, Yeungnam University, 214-1, Dae-hakro 280, Gyeongsan, 712-749, Gyeongbuk, Korea.
| |
Collapse
|
11
|
Marzall-Pereira M, Savi DC, Bruscato EC, Niebisch CH, Paba J, Aluízio R, Ferreira-Maba LS, Galli-Terasawa LV, Glienke C, Kava V. Neopestalotiopsis species presenting wide dye destaining activity: report of a mycelium-associated laccase. Microbiol Res 2019; 228:126299. [PMID: 31422231 DOI: 10.1016/j.micres.2019.126299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 01/26/2023]
|
12
|
Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2019.09.001] [Citation(s) in RCA: 773] [Impact Index Per Article: 128.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Sreedharan V, Bhaskara Rao KV. Biodegradation of Textile Azo Dyes. NANOSCIENCE AND BIOTECHNOLOGY FOR ENVIRONMENTAL APPLICATIONS 2019. [DOI: 10.1007/978-3-319-97922-9_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|