1
|
Boros-Lajszner E, Wyszkowska J, Kucharski J. Evaluation and Assessment of Trivalent and Hexavalent Chromium on Avena sativa and Soil Enzymes. Molecules 2023; 28:4693. [PMID: 37375248 PMCID: PMC10303346 DOI: 10.3390/molecules28124693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Chromium (Cr) can exist in several oxidation states, but the two most stable forms-Cr(III) and Cr(VI)-have completely different biochemical characteristics. The aim of the present study was to evaluate how soil contamination with Cr(III) and Cr(VI) in the presence of Na2EDTA affects Avena sativa L. biomass; assess the remediation capacity of Avena sativa L. based on its tolerance index, translocation factor, and chromium accumulation; and investigate how these chromium species affect the soil enzyme activity and physicochemical properties of soil. This study consisted of a pot experiment divided into two groups: non-amended and amended with Na2EDTA. The Cr(III)- and Cr(VI)-contaminated soil samples were prepared in doses of 0, 5, 10, 20, and 40 mg Cr kg-1 d.m. soil. The negative effect of chromium manifested as a decreased biomass of Avena sativa L. (aboveground parts and roots). Cr(VI) proved to be more toxic than Cr(III). The tolerance indices (TI) showed that Avena sativa L. tolerates Cr(III) contamination better than Cr(VI) contamination. The translocation values for Cr(III) were much lower than for Cr(VI). Avena sativa L. proved to be of little use for the phytoextraction of chromium from soil. Dehydrogenases were the enzymes which were the most sensitive to soil contamination with Cr(III) and Cr(VI). Conversely, the catalase level was observed to be the least sensitive. Na2EDTA exacerbated the negative effects of Cr(III) and Cr(VI) on the growth and development of Avena sativa L. and soil enzyme activity.
Collapse
Affiliation(s)
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland; (E.B.-L.); (J.K.)
| | | |
Collapse
|
2
|
Wyszkowska J, Borowik A, Zaborowska M, Kucharski J. Evaluation of the Usefulness of Sorbents in the Remediation of Soil Exposed to the Pressure of Cadmium and Cobalt. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15165738. [PMID: 36013875 PMCID: PMC9415538 DOI: 10.3390/ma15165738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 06/01/2023]
Abstract
An undesirable side effect of economic progress is increasingly severe pollution with heavy metals, responsible for the degradation of ecosystems, including soil resources. Hence, this research focused on examining six adsorbents in order to distinguish a reactive mineral with the highest capacity to remediate soils contaminated with heavy metals. To this end, the soil was polluted with Co2+ and Cd2+ by applying the metals in concentrations of 100 mg kg-1 d.m. The extent of soil equilibrium disturbances was assessed by evaluating the response of the soil microbiome, activity of seven soil enzymes, and the yields of Helianthus annuus L. Six sorbents were evaluated: a molecular sieve, expanded clay (ExClay), halloysite, zeolite, sepiolite and biochar. Co2+ and Cd2+ proved to be significant inhibitors of the soil's microbiological and biochemical parameters. Organotrophic bacteria among the analysed groups of microorganisms and dehydrogenases among the soil enzymes were most sensitive to the effects of the metals. Both metals significantly distorted the growth and development of sunflower, with Co2+ having a stronger adverse impact on the synthesis of chlorophyll. The molecular sieve and biochar were the sorbents that stimulated the multiplication of microorganisms and enzymatic activity in the contaminated soil. The activity of enzymes was also stimulated significantly by zeolite and sepiolite, while the growth of Helianthus annuus L. biomass was stimulated by the molecular sieve, which can all be considered the most useful reactive materials in the remediation of soils exposed to Co2+ and Cd2+.
Collapse
|
3
|
Functional Nanohybrids and Nanocomposites Development for the Removal of Environmental Pollutants and Bioremediation. Molecules 2022; 27:molecules27154856. [PMID: 35956804 PMCID: PMC9369816 DOI: 10.3390/molecules27154856] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 12/17/2022] Open
Abstract
World population growth, with the consequent consumption of primary resources and production of waste, is progressively and seriously increasing the impact of anthropic activities on the environment and ecosystems. Environmental pollution deriving from anthropogenic activities is nowadays a serious problem that afflicts our planet and that cannot be neglected. In this regard, one of the most challenging tasks of the 21st century is to develop new eco-friendly, sustainable and economically-sound technologies to remediate the environment from pollutants. Nanotechnologies and new performing nanomaterials, thanks to their unique features, such as high surface area (surface/volume ratio), catalytic capacity, reactivity and easy functionalization to chemically modulate their properties, represent potential for the development of sustainable, advanced and innovative products/techniques for environmental (bio)remediation. This review discusses the most recent innovations of environmental recovery strategies of polluted areas based on different nanocomposites and nanohybrids with some examples of their use in combination with bioremediation techniques. In particular, attention is focused on eco-friendly and regenerable nano-solutions and their safe-by-design properties to support the latest research and innovation on sustainable strategies in the field of environmental (bio)remediation.
Collapse
|
4
|
Wyszkowska J, Borowik A, Zaborowska M, Kucharski J. Mitigation of the Adverse Impact of Copper, Nickel, and Zinc on Soil Microorganisms and Enzymes by Mineral Sorbents. MATERIALS 2022; 15:ma15155198. [PMID: 35955133 PMCID: PMC9369485 DOI: 10.3390/ma15155198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 02/02/2023]
Abstract
Despite numerous studies on the influence of heavy metals on soil health, the search for effective, eco-friendly, and economically viable remediation substances is far from over. This encouraged us to carry out a study under strictly controlled conditions to test the effects of Cu2+, Ni2+, and Zn2+ added to soil in amounts of 150 mg·kg−1 d.m. of soil on the soil microbiome, on the activity of two oxidoreductases and five hydrolases, and on the growth and development of the sunflower Helianthus annunus L. The remediation substances were a molecular sieve, halloysite, sepiolite, expanded clay, zeolite, and biochar. It has been demonstrated that the most severe turbulences in the soil microbiome, its activity, and the growth of Helianthus annunus L. were caused by Ni2+, followed by Cu2+, and the mildest negative effect was produced by Zn2+. The adverse impact of heavy metals on the soil microbiome and its activity was alleviated by the applied sorbents. Their application also contributed to the increased biomass of plants, which is significant for the successful phytoextraction of these metals from soil. Irrespective of which property was analysed, sepiolite can be recommended for the remediation of soil polluted with Ni2+ and zeolite—for soil polluted with Cu2+ and Zn2+. Both sorbents mitigated to the highest degree disturbances caused by the tested metals in the soil environment.
Collapse
|
5
|
Georesources as an Alternative for Sustainable Development in COVID-19 Times—A Study Case in Ecuador. SUSTAINABILITY 2022. [DOI: 10.3390/su14137856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Georesources comprise spaces of relevant geological value with the potential to be used and managed as a resource. Therefore, georesources are an essential development factor in the world, mainly oriented to their rational use to improve the quality of life of the surrounding population. This work aims to analyze the main applications, conservation strategies and sustainable use of georesources in the rural area of Manglaralto (Ecuador) through their inventory, assessment and analysis for the adaptation of alternative uses to particular circumstances (e.g., the COVID-19 pandemic). The method used consists of four phases: (i) inventory and mapping of georesources; (ii) description and assessment of georesources using international methodologies (e.g., GtRAM for georoute assessment, hydrogeological characterization using GeoModeller for groundwater assessment, GIS tools for assessing materials with industrial–artisanal interest, and KFM matrix method for the assessment of the level of construction difficulty of sanitary landfills); (iii) georesources complementary applications and (iv) SWOT analysis (Strengths, Weaknesses, Opportunities, Threats) and TOWS matrix preparation (Threats, Opportunities, Weaknesses, Strengths), seeking strategies to guarantee the viability of the use of georesources. As a main result of the investigation, the geolocation of the georesources of the area was obtained. In addition, the assessment of the main georesources such as (i) potential geosites and sites of geological interest (e.g., beaches, cliffs, waterfalls, capes), (ii) groundwater (aquifers), and (iii) materials with artisanal and industrial interest (e.g., clays, sands). Finally, the study allowed us to define areas to develop landfill infrastructure, identify ecosystem services, and construct tsunami refuge site proposals. The case study addressed shows that the inventory and definition of the use of geological resources constitute a fundamental process for the economic, social, and environmental development of the population.
Collapse
|
6
|
Senila M, Neag E, Cadar O, Hoaghia MA, Roman M, Moldovan A, Hosu A, Lupas A, Kovacs ED. Characteristics of Volcanic Tuff from Macicasu (Romania) and Its Capacity to Remove Ammonia from Contaminated Air. Molecules 2022; 27:molecules27113503. [PMID: 35684443 PMCID: PMC9182413 DOI: 10.3390/molecules27113503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
In the present work, the capability of the volcanic tuff from Macicasu (Romania) to remove ammonia (NH3) from air with different contamination levels during 24 h of adsorption experiments was investigated. The natural zeolitic volcanic tuff was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), the Brunauer–Emmett–Teller (BET) method, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis (TGA). The adsorption capacities varied between 0.022 mg NH3 g−1 zeolite and 0.282 mg NH3 g−1 zeolite, depending on the NH3 concentrations in the air and at the contact time. The nonlinear forms of the Langmuir and Freundlich isotherm models were used to fit the experimental data. Additionally, the adsorption of NH3 was studied using nonlinear pseudo-first-order (PFO), pseudo-second-order (PSO), and Elovich kinetic model. Based on the total volume of pores of used volcanic tuff, the NH3 was removed from the air both due to the physical adsorption of NH3 gas and the ion exchange of NH4+ (resulted from a reaction between NH3 and H2O adsorbed by the zeolite). Depending on the initial NH3 concentration and the amount of volcanic tuff, the NH3 concentrations can be reduced below the threshold of this contaminant in the air. The adsorption capacity of NH3 per unit of zeolite (1 g) varied in the range of 0.022–0.282 mg NH3 g−1 depending on the NH3 concentration in the air.
Collapse
Affiliation(s)
- Marin Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
- Correspondence:
| | - Emilia Neag
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
| | - Maria-Alexandra Hoaghia
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
| | - Marius Roman
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
| | - Ana Moldovan
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
| | - Alexandru Hosu
- GeoPlus Services SRL, 99D Braniste Street, 407310 Gilau, Romania;
| | - Angela Lupas
- Doralex Com SRL, 151A Maramureșului Street, 400268 Cluj-Napoca, Romania;
| | - Emoke Dalma Kovacs
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (E.N.); (O.C.); (M.-A.H.); (M.R.); (A.M.); (E.D.K.)
| |
Collapse
|
7
|
Calorific Value of Festuca rubra Biomass in the Phytostabilization of Soil Contaminated with Nickel, Cobalt and Cadmium Which Disrupt the Microbiological and Biochemical Properties of Soil. ENERGIES 2022. [DOI: 10.3390/en15093445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The choice of optimal plant species for phytoremediation and organic fertilization plays an important role in stabilizing the functions of soils contaminated with heavy metals. The influence of nickel, cobalt and cadmium on the biomass yield and calorific value of Festuca rubra, heavy metal concentrations in soil and plants and the microbiological, biochemical and physicochemical proprieties of soil were analyzed in a pot experiment. The tolerance index (TI) describing Festuca rubra’s ability to tolerate heavy metals, as well as the translocation (TF), accumulation (AF) and bioaccumulation (BF) factors of heavy metals in Festuca rubra were calculated. The experiment was conducted in two series: In soil fertilized and not fertilized with compost. Nickel and cobalt significantly inhibited the growth and development of Festuca rubra. The experiment demonstrated that this plant species can be grown on soil contaminated with heavy metals. Festuca rubra contained on average 46.05% C, 34.59% O, 5.91% H, 3.49% N, 0.19% S and 9.76% ash. Festuca rubra has a stable calorific value which is not affected by heavy metals; therefore, biomass harvested from heavy metal-polluted soil can be used for energy generation. The calorific value of Festuca rubra ranged from 15.924 to 16.790 MJ kg−1 plant d.m., and the heat of combustion from 17.696 to 18.576 MJ kg−1. It has a stable calorific value which is not affected by heavy metals, therefore biomass harvested from heavy metal-polluted soil can be used for energy generation. Festuca rubra is particularly useful for the phytostabilization of soil contaminated with cadmium and cobalt. Compost minimizes the adverse effects of heavy metal pollution on the microbiological, biochemical and physicochemical properties of soil.
Collapse
|
8
|
Efficiency in Ofloxacin Antibiotic Water Remediation by Magnetic Zeolites Formed Combining Pure Sources and Wastes. Processes (Basel) 2021. [DOI: 10.3390/pr9122137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this work, red mud (RM) and spinel iron oxide nanoparticles (SPIONs) were added to pure silica/alumina sources (SAs) and fly ash (FA) with the aim of synthesizing and investigating the magnetic behavior of different zeolites. SAs were used to synthesize zeolite with LTA topology (zeolite A) with the addition of both red mud and spinel iron oxide nanoparticles. FA and RM were mixed to synthesize sodalite whereas only FA with the addition of SPIONs was used to form zeolite with FAU-topology (zeolite X). All the synthetic products showed magnetic properties. However, zeolites with spinel iron oxide nanoparticles (zeolites A and X) showed ferromagnetic-like behavior. Sodalite was characterized by a reduction in saturation magnetization, whereas zeolite A with red mud displayed antiferromagnetic behavior. For the first time, all the synthetic products were tested for polluted water remediation by a persistent emerging contaminant, ofloxacin (OFL) antibiotic. The four zeolite types showed good adsorption affinity towards OFL under actual conditions (tap water, natural pH). All materials were also tested for OFL removal in real waters spiked with OFL 10 µg L−1. Satisfactory recoveries (90–92% in tap water, 83–87% in river water) were obtained for the two zeolites synthesized from industrial waste materials.
Collapse
|
9
|
Immobilization of Potentially Toxic Elements in Contaminated Soils Using Thermally Treated Natural Zeolite. MATERIALS 2021; 14:ma14143777. [PMID: 34300696 PMCID: PMC8306760 DOI: 10.3390/ma14143777] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022]
Abstract
Rehabilitation of contaminated soils is a complex and time-consuming procedure. One of the most cost-effective and easy-to-use soil remediation approaches is the use of amendments that stabilize the potential toxic elements (PTE) in soil by reducing their mobility and bioavailability. The stabilization of Cu, Pb, Zn, Cd, Co, Cr, Ni in a contaminated soil using 5% and 10% amendment with thermally treated natural zeolite was investigated using a sequential extraction procedure, contamination and environmental risk factors. The results showed that after amendment, the PTE concentration decreased in the exchangeable and reducible fractions and increased in the oxidizable and residual fractions. The highest immobilization effect, consisting in the decrease of exchangeable fractions with 69% was obtained in case of 10% zeolite amendment and 90 days of equilibration time for Pb; also, more than half of the mobile fraction was immobilized in case of Zn, Cu, and Co and about one third in case of Ni, Cr, and Cd. Generally, the immobilization effect of the 5% and 10% amendment is comparable, but a higher equilibration time enhanced the immobilization effect, especially in the case of Cd, Co, Cu, Pb, and Zn.
Collapse
|
10
|
Boros-Lajszner E, Wyszkowska J, Kucharski J. Phytoremediation of soil contaminated with nickel, cadmium and cobalt. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 23:252-262. [PMID: 32854521 DOI: 10.1080/15226514.2020.1807907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This pot experiment analyzed the use of Brassica napus, Elymus elongatus and Zea mays in the removal of Cd2+ Co2+ and Ni2+ from the soil. The utility of the plants under study for phytoremediation was analyzed based on the biomass of the aboveground parts and roots and the accumulation of metals, bioaccumulation, bioconcentration and translocation capability in the above-ground parts and roots. The effect of heavy metals on the soil enzyme activity and soil physicochemical properties was also determined. Among the species under study, only E. elongatus was found to be suitable for Cd2+ phytoextraction, whereas E. elongatus and Z. mays proved to be suitable for phytostabilisation of Cd2+ and Co2+ because the criterion of the accumulation of metals in the roots at a sufficient level was fulfilled. The index of bioaccumulation in roots was greater than one. Both plant species met the second condition which determined the utility for phytostabilisation, as since the transport of Cd2+ Co2+ and Ni2+ from the roots to the above-ground parts was limited.
Collapse
Affiliation(s)
- Edyta Boros-Lajszner
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jan Kucharski
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
11
|
Synthetic zeolite materials from recycled glass and aluminium food packaging as potential oenological adjuvant. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100572] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Zeolite for Potential Toxic Metal Uptake from Contaminated Soil: A Brief Review. Processes (Basel) 2020. [DOI: 10.3390/pr8070820] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Soil pollution is an increasingly urgent problem for the global environment. Soil can be contaminated with potential toxic metals from many anthropogenic activities, besides fossil fuel combustion and crude oil production, ranging from industry to mining and agriculture. Many technologies have been analysed to solve this type of environmental pollution and methods involving the use of minerals (e.g., clay minerals, zeolites, and natural silica adsorbents) are widely described in the literature. This article provides a summary of studies concerning the use of zeolites in soil remediation. A considerable number of these experiments were conducted using natural zeolites, while fewer concerned the utilization of synthetic zeolites. The mechanism controlling the successful application of these minerals was analysed through referring to global data published on this topic over the last few decades. This review also briefly discusses the limitations on zeolite applications and the drawbacks of the approaches analysed.
Collapse
|
13
|
Use of a Zeolite and Molecular Sieve to Restore Homeostasis of Soil Contaminated with Cobalt. MINERALS 2020. [DOI: 10.3390/min10010053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since contamination of soil with cobalt disturbs the soil’s biological balance, various types of compounds are being sought that could be used to restore the homeostasis of contaminated soil. The aim of the study was to determine the use of a Bio.Zeo.S.01 zeolite and molecular sieve in restoring the microbiological and biochemical balance of soil contaminated with cobalt. Soil samples were contaminated with cobalt (CoCl2·6H2O) at 0, 20, 80 mg·kg−1, and a Bio.Zeo.S.01 zeolite and molecular sieve were introduced at 0 and 15 g·kg−1. The soils on which the experiment was conducted were loamy sand and sandy clay loam. The experiment was carried out in two series on soil with and without a crop sown in it. The multiplication of microorganisms and the soil enzymes’ activity were determined on days 25 and 50 (harvest) of the experiment, and the yield of the underground and above-ground parts of maize and chemical and physical properties of soil were determined on the day of harvest. It was found that the microorganisms’ multiplication, enzyme activity, and maize yield were significantly disturbed by the excess of cobalt in the soil regardless of the soil type. The zeolite Bio.Zeo.S.01 used in the study had a smaller impact on microorganisms and soil enzyme activity than the molecular sieve. Cobalt accumulated more in the roots than in the above-ground parts of maize. An addition of sorbents decreased the accumulation of cobalt in maize grown only on sandy clay loam.
Collapse
|
14
|
Soil Bacterial Community and Soil Enzyme Activity Depending on the Cultivation of Triticum aestivum, Brassica napus, and Pisum sativum ssp. arvense. DIVERSITY 2019. [DOI: 10.3390/d11120246] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study aims to determine the effects of crops and their cultivation regimes on changes in the soil microbiome. Three plant species were selected for the study: Triticum aestivum, Brassica napus, and Pisum sativum ssp. arvense, that were cultivated in soils with a similar particle size fraction. Field experiments were performed on the area of the Iławski Lake District (north-eastern Poland) at the Production and Experimental Station ‘Bałcyny’ (53°35′49″ N, 19°51′20″ E). In soil samples counts, organotrophic bacteria and actinobacteria were quantified, and the colony development index (CD) and ecophysiological diversity index (EP) were computed. In addition, a 16S amplicon sequencing encoding gene was conducted based on the hypervariable region V3–V4. Further analyses included an evaluation of the basic physiochemical properties of the soil and the activities of dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and β-glucosidase. Analyses carried out in the study demonstrated that the rhizosphere of Triticum aestivum had a more beneficial effect on bacteria development than those of Brassica napus and Pisum sativum ssp. arvense, as indicated by the values of the ecophysiological diversity index (EP) and OTU abundance calculated for individual taxa in the soils in which the studied crops were grown. More OTUs of the taxa Alphaproteobacteria, Gammaproteobacteria, Clostridia, Sphingomonadales, Rhodospirillales, Xanthomonadales, Streptomycetaceae, Pseudonocardiaceae, Acetobacteraceae, Solibacteraceae, Kaistobacter, Cohnella, Azospirillum, Cryptosporangium, Rhodoplanes, and Saccharopolyspora were determined in the bacteriome structure of the soil from Triticum aestivum cultivation than in the soils from the cultivation of Brassica napus and Pisum sativum ssp. arvense. Also, the activities of most of the analyzed enzymes, including urease, catalase, alkaline phosphatase, β-glucosidase, and arylsulfatase, were the higher in the soil sown with Triticum aestivum than in those with the other two plant species.
Collapse
|
15
|
Turan V. Confident performance of chitosan and pistachio shell biochar on reducing Ni bioavailability in soil and plant plus improved the soil enzymatic activities, antioxidant defense system and nutritional quality of lettuce. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109594. [PMID: 31454752 DOI: 10.1016/j.ecoenv.2019.109594] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
Nickel being a toxic heavy metal is considered as a hazardous pollutant in the soil environment. The cultivation of edible vegetables on Ni contaminated soil can deteriorate plant quality which causes critical health issues to humans and animals. Therefore, the remediation for such Ni polluted soils has currently become a great challenge for the researchers. Contrastingly, lowering bioavailability of Ni in those soils based on applying appropriate immobilizing amendments demonstrating a target to relieve virulence to plants can remarkably diminish the environmental hazard. In this experiment, biochar (BR) along diverse clays like bentonite (BE), cationic-zeolite (C-ZE), chitosan (CN) and attapulgite (AP) as individual doses at 2% each in a soil synthetically spiked with Ni (at 50 ppm) magnificently immobilize Ni and curtailed its bioavailability to lettuce (Lactuca sativa L.). In addition, the related influences of planned treatments on translocation of Ni to shoots and leaves, antioxidant preventive system over oxidative injury, biochemistry and nutritional ability of lettuce were monitored. Results suggested that the CN2% treatment performed excellently in terms of reducing Ni concentrations in leaves and roots of lettuce plants along bioavailable Ni in the soil after plant harvest. Surprisingly, the BR2% treatment efficiently promoted enzymatic activities in the soil and developed moisture content, photosynthesis, biomass, biochemistry, and nutrition (both micronutrients and macronutrients) and antioxidant preventive system while diminished Ni oxidative injury in lettuce plants over rest of the treatments. Finally, our results confirmed that individually applying CN at 2% in a Ni contaminated soil could significantly control Ni bioavailability, whereas, application of BR at 2% could remarkably develop aforementioned parameters in lettuce plants.
Collapse
Affiliation(s)
- Veysel Turan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Bingöl University, 12000, Bingöl, Turkey.
| |
Collapse
|
16
|
Abualhasan M, Jaradat N, Sawaftah Z, Mohsen H, Najjar D, Zareer W. Evaluation of Heavy Metals and Microbiological Contamination of Selected Herbals from Palestine. Open Life Sci 2019; 14:448-453. [PMID: 33817180 PMCID: PMC7874764 DOI: 10.1515/biol-2019-0050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 05/06/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Herbal medicine is widely used for the prevention and treatment of diseases worldwide including Palestine and may require long term usage. The level of some heavy metals and microbial contaminants in some of these medicinal plants consumed by Palestinians were studied in order to evaluate their quality. METHODOLOGY The level of metals including: Zinc, Cadmium, Lead and Copper were quantified by Atomic absorption spectroscopy (AAS). Moreover, the bacterial and fungal contaminations were tested for some of the selected plants in Palestine. The procedures of microbial and elemental testing of the plants followed USP. RESULTS The result of the heavy metals testing showed that copper and cadmium were above the allowable limits in all the tested plants. Zinc metal was above the allowable limit in 78.9% of the tested samples. The microbiological results of the tested plants showed that 63.2% of the tested plants were contaminated by bacteria and 89.5% were contaminated by yeast. CONCLUSIONS Herbal medicine used in the Palestinian markets doesn't meet the international requirement for heavy metal and microbiological limits. Therefore, urgent action has to be taken by the responsible authorities including the Ministry of health to implement importation and registration requirements and perform regular quality checks of sold and imported herbal medicines. Pharmacists as expert professionals must take an active role in selling and advising consumers about the quality and efficacy of the sold plants.
Collapse
Affiliation(s)
- Murad Abualhasan
- An-Najah National University, Faculty of medicine and health sciences, Department of Pharmacy, Nablus, Palestine
| | - Nidal Jaradat
- An-Najah National University, Faculty of medicine and health sciences, Department of Pharmacy, Nablus, Palestine
| | - Zahraa Sawaftah
- An-Najah National University, Faculty of medicine and health sciences, Department of Pharmacy, Nablus, Palestine
| | - Hala Mohsen
- An-Najah National University, Faculty of medicine and health sciences, Department of Pharmacy, Nablus, Palestine
| | - Dyala Najjar
- An-Najah National University, Faculty of medicine and health sciences, Department of Pharmacy, Nablus, Palestine
| | - Wahbi Zareer
- Quality control manger, Birzeit Palestine pharmaceutical company, Ramallah, Palestine
| |
Collapse
|
17
|
Shahbaz AK, Lewińska K, Iqbal J, Ali Q, Iqbal M, Abbas F, Tauqeer HM, Ramzani PMA. Improvement in productivity, nutritional quality, and antioxidative defense mechanisms of sunflower (Helianthus annuus L.) and maize (Zea mays L.) in nickel contaminated soil amended with different biochar and zeolite ratios. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 218:256-270. [PMID: 29684778 DOI: 10.1016/j.jenvman.2018.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 05/25/2023]
Abstract
Nickel (Ni) contaminated soils pose a potential ecological risk to the environment, soil health, and quality of food produced on them. We hypothesized that application of miscanthus biochar (BC) and cationic zeolite (ZE) at various proportions into a Ni contaminated soil can efficiently immobilize Ni and reduce its bioavailability to sunflower (Helianthus annuus L.) and maize (Zea mays L.). An electroplating effluent contaminated soil was amended with BC and ZE, as sole treatments (2% w/w) and their combinations of various ratios (BC, ZE, BC25%ZE75%, BC50%ZE50% and BC75%ZE25%) for immobilization of Ni in the soil. Furthermore, the associated effects of these treatments on residual and DTPA-extractable Ni from the soil; concentrations of Ni in shoots, roots, and grain; growth, physiology, biochemistry and the antioxidant defence mechanisms of sunflower and maize were investigated. Results revealed that BC50%ZE50% treatment efficiently reduced DTPA-extractable Ni in the soil, Ni concentrations in shoots, roots, and grain, while improved selective parameters of both plants. Interestingly, the BC75%ZE25% treatment significantly improved the biomass, grain yield, physiology, biochemistry and antioxidant defense machinery, while decreased Ni oxidative stress in both sunflower and maize, compared to rest of the treatments. The results demonstrate that the BC50%ZE50% treatment can efficiently reduce Ni concentrations in the roots, shoots and grain of both sunflower and maize whereas, an improvement in biomass, grain yield, physiological, biochemical, and antioxidant defense machinery of both crops can only be achieved with the application of BC75%ZE25% treatment in a Ni contaminated soil.
Collapse
Affiliation(s)
- Ali Khan Shahbaz
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Karolina Lewińska
- Adam Mickiewicz University in Poznan, Faculty of Geographical and Geological Sciences, Department of Soil Science and Remote Sensing of Soilsul, Bogumiła Krygowskiego 10, 61-680, Poznań, Poland
| | - Javed Iqbal
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Qasim Ali
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Iqbal
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Hafiz Muhammad Tauqeer
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Pia Muhammad Adnan Ramzani
- Cholistan Institute of Desert Studies, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
18
|
Sharma S, Tiwari S, Hasan A, Saxena V, Pandey LM. Recent advances in conventional and contemporary methods for remediation of heavy metal-contaminated soils. 3 Biotech 2018; 8:216. [PMID: 29651381 DOI: 10.1007/s13205-018-1237-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/02/2018] [Indexed: 10/17/2022] Open
Abstract
Remediation of heavy metal-contaminated soils has been drawing our attention toward it for quite some time now and a need for developing new methods toward reclamation has come up as the need of the hour. Conventional methods of heavy metal-contaminated soil remediation have been in use for decades and have shown great results, but they have their own setbacks. The chemical and physical techniques when used singularly generally generate by-products (toxic sludge or pollutants) and are not cost-effective, while the biological process is very slow and time-consuming. Hence to overcome them, an amalgamation of two or more techniques is being used. In view of the facts, new methods of biosorption, nanoremediation as well as microbial fuel cell techniques have been developed, which utilize the metabolic activities of microorganisms for bioremediation purpose. These are cost-effective and efficient methods of remediation, which are now becoming an integral part of all environmental and bioresource technology. In this contribution, we have highlighted various augmentations in physical, chemical, and biological methods for the remediation of heavy metal-contaminated soils, weighing up their pros and cons. Further, we have discussed the amalgamation of the above techniques such as physiochemical and physiobiological methods with recent literature for the removal of heavy metals from the contaminated soils. These combinations have showed synergetic effects with a many fold increase in removal efficiency of heavy metals along with economic feasibility.
Collapse
|