1
|
Lu J, Guo Y, Shan X, Song Y, Li R, Tian L, Li X. Solid electrochemiluminescence sensor by immobilization luminol in Zn-Co-ZIF CNFs for sensitive detection of procymidone in vegetables. Mikrochim Acta 2024; 191:508. [PMID: 39102114 DOI: 10.1007/s00604-024-06582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
A solid-state electrochemiluminescence (ECL) sensor was fabricated by immobilizing luminol, a classical luminescent reagent, on a Zn-Co-ZIF carbon fiber-modified electrode for the rapid and sensitive detection of procymidone (PCM) in vegetable samples. The sensor was created by sequentially modifying the glassy carbon electrode with Zn-Co-ZIF carbon fiber (Zn-Co-ZIF CNFs), Pt@Au NPs, and luminol. Zn-Co-ZIF CNFs, prepared through electrospinning and high-temperature pyrolysis, possessed a large specific surface area and porosity, making it suitable as carrier and electron transfer accelerator in the system. Pt@Au NPs demonstrated excellent catalytic activity, effectively enhancing the generation of active substances. The ECL signal was significantly amplified by the combination of Zn-Co-ZIF CNFs and Pt@Au NPs, which can subsequently be diminished by procymidone. The ECL intensity decreased proportionally with the addition of procymidone, displaying a linear relationship within the concentration range 1.0 × 10-13 to 1.0 × 10-6 mol L-1 (R2 = 0.993). The sensor exhibited a detection limit of 3.3 × 10-14 mol L-1 (S/N = 3) and demonstrated outstanding reproducibility and stability, making it well-suited for the detection of procymidone in vegetable samples.
Collapse
Affiliation(s)
- Juan Lu
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China.
- Technological Innovation Laboratory for Research and Development of Economic Plants and Edible and Medicinal Fungi in Cold Region of Jilin Province, Changchun, 130032, P.R. China.
| | - Yanjia Guo
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Xiangyu Shan
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Yujia Song
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Ruidan Li
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Li Tian
- College of Chemistry, Changchun Normal University, Changchun, 130032, P.R. China
| | - Xuwen Li
- College of Chemistry, Jilin University, Changchun, 130022, P.R. China.
| |
Collapse
|
2
|
Hu W, Chen G, Yuan W, Guo C, Liu F, Zhang S, Cao Z. Iprodione induces hepatotoxicity in zebrafish by mediating ROS generation and upregulating p53 signalling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115911. [PMID: 38181604 DOI: 10.1016/j.ecoenv.2023.115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Iprodione is an effective and broad-spectrum fungicide commonly used for early disease control in fruit trees and vegetables. Due to rainfall, iprodione often finds its way into water bodies, posing toxicity risks to non-target organisms and potentially entering the human food chain. However, there is limited information available regarding the developmental toxicity of iprodione specifically on the liver in existing literature. In this study, we employed larval and adult zebrafish as models to investigate the toxicity of iprodione. Our findings revealed that iprodione exposure led to yolk sac edema and increased mortality in zebrafish. Notably, iprodione exhibited specific effects on zebrafish liver development. Additionally, zebrafish exposed to iprodione experienced an overload of reactive oxygen species, resulting in the upregulation of p53 gene expression. This, in turn, triggered hepatocyte apoptosis and disrupted carbohydrate/lipid metabolism as well as energy demand systems. These results demonstrated the substantial impact of iprodione on zebrafish liver development and function. Furthermore, the application of astaxanthin (an antioxidant) and p53 morpholino partially mitigated the liver toxicity caused by iprodione. To summarize, iprodione induces apoptosis through the upregulation of p53 mediated by oxidative stress signals, leading to liver toxicity in zebrafish. Our study highlights that exposure to iprodione can result in hepatotoxicity in zebrafish, and it may potentially pose toxicity risks to other aquatic organisms and even humans.
Collapse
Affiliation(s)
- Weitao Hu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Guilan Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Wenbin Yuan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Chen Guo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China
| | - Shouhua Zhang
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang University, Nanchang, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an 343009, China.
| |
Collapse
|
3
|
Jabłońska-Trypuć A, Wydro U, Wołejko E, Makuła M, Krętowski R, Naumowicz M, Sokołowska G, Serra-Majem L, Cechowska-Pasko M, Łozowicka B, Kaczyński P, Wiater J. Selected Fungicides as Potential EDC Estrogenic Micropollutants in the Environment. Molecules 2023; 28:7437. [PMID: 37959855 PMCID: PMC10648374 DOI: 10.3390/molecules28217437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
An increasing level of pesticide exposition is being observed as a result of the consumption of large amounts of fruits, vegetables and grain products, which are key components of the vegetarian diet. Fungicides have been classified as endocrine-disrupting compounds, but their mechanisms of action have not yet been clarified. The effect of boscalid (B), cyprodinil (C) and iprodione (I) combined with Tamoxifen (T) and 17β-estradiol (E2) on cell viability, cell proliferation, reporter gene expression, ROS content, the cell membrane's function, cell morphology and antioxidant enzymes gene expression in MCF-7 and T47D-KBluc cell lines were investigated. The cell lines were chosen due to their response to 17β -estradiol. The selected fungicides are commonly used in Poland to protect crops against fungi. Our results revealed that the studied fungicides caused significant increases in cell viability and proliferation, and estrogenic activity was present in all studied compounds depending on their concentrations. Oxidative stress activated uncontrolled cancer cell proliferation by inducing ROS production and by inhibiting antioxidant defense. Our findings verify that the studied fungicides could possibly exhibit endocrine-disrupting properties and exposure should be avoided.
Collapse
Affiliation(s)
- Agata Jabłońska-Trypuć
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (G.S.)
| | - Urszula Wydro
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (G.S.)
| | - Elżbieta Wołejko
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (G.S.)
| | - Marcin Makuła
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Traugutta sq.2, 41-800 Zabrze, Poland;
| | - Rafał Krętowski
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A Street, 15-222 Bialystok, Poland; (R.K.); (M.C.-P.)
| | - Monika Naumowicz
- Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Street, 15-245 Bialystok, Poland;
| | - Gabriela Sokołowska
- Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland; (U.W.); (E.W.); (G.S.)
| | - Lluis Serra-Majem
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain;
| | - Marzanna Cechowska-Pasko
- Department of Pharmaceutical Biochemistry, Medical University of Bialystok, Mickiewicza 2A Street, 15-222 Bialystok, Poland; (R.K.); (M.C.-P.)
| | - Bożena Łozowicka
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 Street, 15-195 Białystok, Poland; (B.Ł.); (P.K.)
| | - Piotr Kaczyński
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 Street, 15-195 Białystok, Poland; (B.Ł.); (P.K.)
| | - Józefa Wiater
- Department of Agri-Food Engineering and Environmental Management, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E Street, 15-351 Białystok, Poland;
| |
Collapse
|
4
|
Pan H, Zhu B, Li J, Zhou Z, Bu W, Dai Y, Lu X, Liu H, Tian Y. Degradation of iprodione by a novel strain Azospirillum sp. A1-3 isolated from Tibet. Front Microbiol 2023; 13:1057030. [PMID: 36699606 PMCID: PMC9869045 DOI: 10.3389/fmicb.2022.1057030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
A bacterial strain A1-3 with iprodione-degrading capabilities was isolated from the soil for vegetable growing under greenhouses at Lhasa, Tibet. Based on phenotypic, phylogenetic, and genotypic data, strain A1-3 was considered to represent a novel species of genus Azospirillum. It was able to use iprodione as the sole source of carbon and energy for growth, 27.96 mg/L (50.80%) iprodione was reduced within 108 h at 25°C. During the degradation of iprodione by Azospirillum sp. A1-3, iprodione was firstly degraded to N-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine, and then to (3,5-dichlorophenylurea) acetic acid. However, (3,5-dichlorophenylurea) acetic acid cannot be degraded to 3,5-dichloroaniline by Azospirillum sp. A1-3. A ipaH gene which has a highly similarity (98.72-99.92%) with other previously reported ipaH genes, was presented in Azospirillum sp. A1-3. Azospirillum novel strain with the ability of iprodione degradation associated with nitrogen fixation has never been reported to date, and Azospirillum sp. A1-3 might be a promising candidate for application in the bioremediation of iprodione-contaminated environments.
Collapse
Affiliation(s)
- Hu Pan
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Beike Zhu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Jin Li
- Department of Life Sciences, Changzhi University, Changzhi, China
| | - Ziqiong Zhou
- School of Food Science, Tibet Institute of Agriculture and Animal Husbandry, Nyingchi, China
| | - Wenbin Bu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yanna Dai
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,*Correspondence: Huhu Liu, ✉
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China,Yun Tian, ✉
| |
Collapse
|
5
|
Deng H, Chen D, Li X, Yang F, Liu S, Sun Y, Shi M, Bian Z, Tang G, Fan Z. Development of a colloidal gold immunochromatographic test strip for the rapid detection of iprodione. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4370-4376. [PMID: 36268701 DOI: 10.1039/d2ay01374f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Iprodione is a dicarboximide fungicide that is widely used in agriculture around the world. A reliable and rapid detection method is needed for the on-site monitoring of iprodione residues in a variety of agricultural products. Herein, a colloidal gold immunochromatographic test strip was developed based on a selected coating antigen and a specific monoclonal antibody against iprodione. The particle size of colloidal gold, the preparation technique of the conjugate pad, the composition of the loading buffer, and the extraction solvent were comprehensively optimized for the test strip. A cut-off value of 0.9 mg kg-1 (50 ng mL-1) and a visual limit of detection of 0.09 mg kg-1 (5 ng mL-1) were achieved in a complex matrix of tobacco. No cross-reactivity was observed for iprodione metabolite and four other widely used pesticides during tobacco growth. Furthermore, the developed colloidal gold immunochromatographic test strip was applied to determine iprodione residues in tobacco samples, and the obtained results were in good agreement with those obtained by liquid chromatography tandem mass spectrometry. Additionally, the test strip was found to be stable afterlong-term storage at 37 °C for two months. The developed colloidal gold immunochromatographic test strip showed excellent accuracy, sensitivity, specificity, and stability, therefore, it is suitable for the rapid detection of iprodione residues in complex matrices.
Collapse
Affiliation(s)
- Huimin Deng
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Dan Chen
- Yunnan Institute of Tobacco Quality Inspection & Supervision, Kunming 650106, China
| | - Xiangyang Li
- China Tobacco Yunan Imp. & Exp. Co., Ltd, Kunming 650031, China
| | - Fei Yang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Yingying Sun
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Mowen Shi
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Zhaoyang Bian
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| | - Ziyan Fan
- China National Tobacco Quality Supervision and Test Center, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Li L, Zhao T, Liu Y, Liang H, Shi K. Method Validation, Residues and Dietary Risk Assessment for Procymidone in Green Onion and Garlic Plant. Foods 2022; 11:foods11131856. [PMID: 35804675 PMCID: PMC9266201 DOI: 10.3390/foods11131856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Procymidone is used as a preventive and curative fungicide to control fungal growth on edible crops and ornamental plants. It is one of the most frequently used pesticides and has a high detection rate, but its residue behaviors remain unclear in green onion and garlic plants (including garlic, garlic chive, and serpent garlic). In this study, the dissipation and terminal residues of procymidone in four matrices were investigated, along with the validation of the method and risk assessment. The analytical method for the target compound was developed using gas chromatography-tandem mass spectrometry (GC-MS/MS), which was preceded by a Florisil cleanup. The linearities of this proposed method for investigating procymidone in green onion, garlic, garlic chive, and serpent garlic were satisfied in the range from 0.010 to 2.5 mg/L with R2 > 0.9985. At the same time, the limits of quantification in the four matrices were 0.020 mg/kg, and the fortified recoveries of procymidone ranged from 86% to 104%, with relative standard deviations of 0.92% to 13%. The dissipation of procymidone in green onion and garlic chive followed first-order kinetics, while the half-lives were less than 8.35 days and 5.73 days, respectively. The terminal residue levels in garlic chive were much higher than those in green onion and serpent garlic because of morphological characteristics. The risk quotients of different Chinese consumer groups to procymidone in green onion, garlic chive, and serpent garlic were in the range from 5.79% to 25.07%, which is comparably acceptable. These data could provide valuable information on safe and reasonable use of procymidone in its increasing applications.
Collapse
Affiliation(s)
- Li Li
- College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
- Correspondence:
| | - Tingting Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010020, China; (T.Z.); (Y.L.); (H.L.)
| | - Yu Liu
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010020, China; (T.Z.); (Y.L.); (H.L.)
| | - Hongwu Liang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010020, China; (T.Z.); (Y.L.); (H.L.)
| | - Kaiwei Shi
- Institute for Pesticide Control, Ministry of Agriculture and Rural Affairs, Beijing 100125, China;
| |
Collapse
|
7
|
Huang Y, Guo N, Xu C, Xie N, Liang F, Yang S, Lv S. Development and critical evaluation of a novel fluorescent nanosensor based on a molecularly imprinted polymer for the rapid detection of procymidone in ginseng. Analyst 2022; 147:2718-2730. [DOI: 10.1039/d1an02186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effective methods are required to quantify the organochlorine pesticide procymidone due to its potentially harmful effects toward human health and the environment.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Nan Guo
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Chaojian Xu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Ningkang Xie
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Feiyan Liang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Shuo Yang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| | - Shaowu Lv
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
8
|
Yao J, Xu X, Liu H, Xu L, Liu L, Kuang H, Xu C. Sensitive immunochromatographic assay for the detection of the dimethachlone fungicide in tomatoes and lettuces. NEW J CHEM 2022. [DOI: 10.1039/d2nj00721e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive and rapid gold nanoparticle-based immunochromatographic strip (GNP-ICS) for the detection of dimethachlone (DMT) in tomatoes and lettuces.
Collapse
Affiliation(s)
- Jingjing Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Haiying Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liguang Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Hua Kuang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
- International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
9
|
Chormey DS, Tonbul G, Soylu G, Saygılar A, Bakırdere S. Determination of Four Priority Polycyclic Aromatic Hydrocarbons in Food Samples by Gas Chromatography – Mass Spectrometry (GC-MS) after Vortex Assisted Dispersive Liquid-Liquid Microextraction (DLLME). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1922432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dotse Selali Chormey
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
- Radix Analysis Laboratory, İstanbul, Turkey
| | - Güldeniz Tonbul
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
- Radix Analysis Laboratory, İstanbul, Turkey
| | | | | | - Sezgin Bakırdere
- Department of Chemistry, Yıldız Technical University, İstanbul, Turkey
- Turkish Academy of Sciences (TÜBA), Ankara, Turkey
| |
Collapse
|
10
|
Lai Q, Sun X, Li L, Li D, Wang M, Shi H. Toxicity effects of procymidone, iprodione and their metabolite of 3,5-dichloroaniline to zebrafish. CHEMOSPHERE 2021; 272:129577. [PMID: 33465616 DOI: 10.1016/j.chemosphere.2021.129577] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Dicarboximide fungicides mainly including procymidone, iprodione, vinclozolin, and dimethachlon are often applied as protective fungicides, 3,5-dichloroaniline (3,5-DCA) is their common metabolite in plant and environment. In this study, the acute toxicity of procymidone, iprodione and their metabolite of 3,5-DCA toward zebrafish was evaluated by semi-static method. The enrichment and metabolism of procymidone and iprodione in zebrafish were also clarified. The results indicated that procymidone and iprodione exhibited moderately toxic to adult zebrafish with the LC50 of 2.00 mg/L, 5.70 mg/L at 96 h. Both procymidone and iprodione could be metabolized to 3,5-DCA in zebrafish, which showed higher toxic to adult zebrafish with the LC50 of 1.64 mg/L at 96 h. From the perspective of histomorphology, for all treatment groups, the brain of the zebrafish was significantly damaged, while the damage to gut and gills was lighter. For procymidone, the biological concentration factor (BCF8d) were 236 and 246 at the exposure concentration of 0.2 mg/L and 0.04 mg/L, and the BCF8d were 3.2 and 2.4 for iprodione at the exposure concentration of 0.5 mg/L and 0.1 mg/L. Therefore, the procymidone and iprodione were moderate-enriched and low-enriched in zebrafish, respectively.
Collapse
Affiliation(s)
- Qi Lai
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Xiaofang Sun
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Lianshan Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Da Li
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Minghua Wang
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China
| | - Haiyan Shi
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing, 210095, China.
| |
Collapse
|
11
|
Erulaş FA. Sensitive determination of nickel at trace levels in surface water samples by slotted quartz tube flame atomic absorption spectrometry after switchable solvent liquid-phase microextraction. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:272. [PMID: 32266579 DOI: 10.1007/s10661-020-8208-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
In this study, switchable solvent (SS) for liquid-phase microextraction (LPME) was used as a tool to preconcentrate nickel from aqueous samples for determination by flame atomic absorption spectrometry. The SS-LPME method was optimized thoroughly to boost the absorbance signal of nickel for trace level determination. Parameters optimized included switchable solvent volume, sodium hydroxide concentration, sodium hydroxide volume, and eluent volume. The SS-LPME method enhanced the detection power by about 32-folds, and a slotted quartz tube (SQT) was used to obtain 2.6-folds increase in detection power. The combination of LPME and SQT-FAAS produced 104-folds enhancement, correlating to a limit of detection value of 1.8 μg/L. Low relative standard deviations calculated for the lowest calibration concentration indicated good repeatability for replicate measurements. Accuracy of the optimized method and its applicability to real samples was tested on two river samples. The results (85-103%) obtained from the spike recovery experiments were satisfactory.
Collapse
Affiliation(s)
- Fatih Ahmet Erulaş
- Faculty of Education, Department of Science Education, Siirt University, 56100, Siirt, Turkey.
| |
Collapse
|
12
|
Kapukıran F, Fırat M, Chormey DS, Bakırdere S, Özdoğan N. Accurate and Sensitive Determination Method for Procymidone and Chlorflurenol in Municipal Wastewater, Medical Wastewater and Irrigation Canal Water by GC-MS After Vortex Assisted Switchable Solvent Liquid Phase Microextraction. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:848-853. [PMID: 30989280 DOI: 10.1007/s00128-019-02618-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
In this study, the detection power of a gas chromatography mass spectrometer (GC-MS) for procymidone and chlorflurenol was significantly enhanced using switchable solvent liquid phase microextraction (SS-LPME) as a preconcentration tool. This was achieved by a comprehensive optimization of significant parameters to the SS-LPME method such as switchable solvent amount, concentration and amount of sodium hydroxide, pH effect and mixing effect. The optimum experimental conditions obtained were used to determine analytical figures of merit for the analytes. The limits of detection obtained were 0.44 and 2.9 ng/mL for procymidone and chlorflurenol, respectively. The optimum method was applied to water sampled from an irrigation canal and two wastewater samples. The samples were spiked at two concentrations and the percent recovery results obtained ranged between 86 and 115% for both analytes. The recovery results together with the low standard deviations recorded validated the method as accurate and precise.
Collapse
Affiliation(s)
- Fatih Kapukıran
- Environmental Engineer Department, Institute of Science, Bülent Ecevit University, 67100, Zonguldak, Turkey
| | - Merve Fırat
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, 34210, İstanbul, Turkey
| | - Dotse Selali Chormey
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, 34210, İstanbul, Turkey
| | - Sezgin Bakırdere
- Faculty of Art and Science, Chemistry Department, Yıldız Technical University, 34210, İstanbul, Turkey.
| | - Nizamettin Özdoğan
- Environmental Engineer Department, Institute of Science, Bülent Ecevit University, 67100, Zonguldak, Turkey.
| |
Collapse
|