1
|
Wang J, Lou Y, Mo K, Zheng X, Zheng Q. Occurrence of hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA) in indoor dust from different microenvironments: levels, profiles, and human exposure. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6043-6052. [PMID: 37222968 DOI: 10.1007/s10653-023-01620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/12/2023] [Indexed: 05/25/2023]
Abstract
The levels and distributions of hexabromocyclododecane diastereoisomers (HBCDs) (including α, β, and γ-HBCD) and tetrabromobisphenol A (TBBPA) were investigated in indoor dust from bedrooms and offices. HBCDs diastereoisomers were the most abundant compounds in the dust samples, and the concentrations of ∑HBCDs in the bedrooms and offices ranged from 10.6 to 290.1 ng/g and 17.6 to 1521.9 ng/g, respectively. The concentrations of target compounds in the offices were generally higher than those in the bedrooms, probably due to the presence of more electrical equipment in the offices. In this study, highest levels of target compounds were all found in the electronics. In the bedrooms, the highest mean level of ∑HBCDs was found in air conditioning filter dust (118.57 ng/g), while the personal computer table surface dust showed the peak mean concentrations of ∑HBCDs (290.74 ng/g) and TBBPA (539.69 ng/g) in the offices. Interestingly, a significantly positive correlation was observed between the concentrations of ∑HBCDs in windowsills and beddings dust in the bedrooms, suggesting beddings was one of the crucial sources of ∑HBCDs in the bedrooms. The high dust ingestion values of ∑HBCDs and TBBPA were 0.046 and 0.086 ng/kg bw/day for adults, while 0.811 and 0.04 ng/kg bw/day for toddlers, respectively. The high dermal exposure values of ∑HBCDs were 0.026 and 0.226 ng/kg bw/day for adults and toddlers, respectively. Except for dust ingestion, other human exposure pathways (such as the dermal contact with beddings and furniture) should be paid attention.
Collapse
Affiliation(s)
- Jing Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yueshang Lou
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Kexin Mo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaobo Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510000, China
| | - Qian Zheng
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, 510000, China.
| |
Collapse
|
2
|
Al-Omran LS, Stubbings WA, Harrad S. Concentrations and isomer profiles of hexabromocyclododecanes (HBCDDs) in floor, elevated surface, and outdoor dust samples from Basrah, Iraq. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:910-920. [PMID: 35662304 DOI: 10.1039/d2em00133k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Concentrations of the α, β, and γ- diastereomers of hexabromocyclododecane (α-, β-, and γ-HBCDD) were measured in 60 dust samples from 20 homes across Basrah, Iraq. From each home, two indoor dust (ID) samples (specifically one collected from elevated surfaces (ESD) and one from the floor (FD)) were collected from the living room, with one outdoor dust (OD) sample collected from the front yard of the house. Concentrations of HBCDDs decreased in the following sequence ESD > FD > OD. For ID, ΣHBCDD concentrations varied from 5.3 ng g-1 in FD to 150 ng g-1 in ESD, with median levels of 60 and 40 ng g-1 in ESD and FD respectively. Concentrations of γ-HBCDD, and consequently of ΣHBCDDs in ESD, significantly (p < 0.05) exceeded those in FD. For adults, this implies that exposure assessments based on FD only may underestimate exposure, as adults are more likely to ingest ESD. Concentrations of ΣHBCDDs in OD ranged between 7.4 and 120 ng g-1 with a median of 35 ng g-1 and were significantly exceeded (p < 0.05) by those in ID samples. Concentrations of ΣHBCDDs in OD from houses with car parking areas exceeded (p < 0.05) those in OD from other homes, implying vehicles as potential emission sources of HBCDDs. Simultaneously, there was moderate correlation (R = 0.510-0.609, p < 0.05) between concentrations in ID and OD, implying that the indoor environment is an important source of OD contamination. The isomer pattern of HBCDDs in dust samples displayed a predominance of α-HBCDD, which represented 56%, 52% and 59% ΣHBCDD in ESD, FD and OD samples respectively. Derived from the concentrations reported in this study, the median and 95th percentile estimated daily intakes (EDI) for Iraqi adults and toddlers through house dust ingestion did not exceed the reference dose (RfD) value for HBCDD.
Collapse
Affiliation(s)
- Layla Salih Al-Omran
- Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Liu X. Understanding Semi-volatile Organic Compounds (SVOCs) in Indoor Dust. INDOOR + BUILT ENVIRONMENT : THE JOURNAL OF THE INTERNATIONAL SOCIETY OF THE BUILT ENVIRONMENT 2022; 31:291-298. [PMID: 35221787 PMCID: PMC8879700 DOI: 10.1177/1420326x211070859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Xiaoyu Liu
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC 27711
| |
Collapse
|
4
|
Liu X, Folk E. Sorption and migration of organophosphate flame retardants between sources and settled dust. CHEMOSPHERE 2021; 278:130415. [PMID: 33839398 PMCID: PMC8204724 DOI: 10.1016/j.chemosphere.2021.130415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 05/19/2023]
Abstract
Dust serves as a strong sink for indoor pollutants, such as organophosphorus flame retardants (OPFRs). OPFRs are semivolatile chemicals that are slow in emissions but have long-term effects in indoor environments. This research studied the emission, sorption, and migration of OPFRs tris(2-chloroethyl) phosphate, tris(1-chloro-2-propyl) phosphate, and tris(1,3-dichloro-2-propyl) phosphate, from different sources to settled dust on OPFR source surfaces and OPFR-free surfaces. Four sink effect tests and six dust-source migration tests, including direct contact and sorption tests were conducted in 53 L stainless steel small chambers at 23 °C and 50% relative humidity. OPFR emission concentrations, and sorption and migration rates were determined. The dust-air and dust-material partition coefficients were estimated based on the experimental data and compared with those from the literature obtained by empirical equations. They are in the range of 1.4 × 107 to 2.6 × 108 (dimensionless) for the dust-air equilibrium partition coefficients and 2.38 × 10-3 to 0.8 (dimensionless) for the dust-material equilibrium partition coefficients. It was observed that the dust with less organic content and smaller size tended to absorb more OPFRs, but different dust did not significantly affect OPFRs emission from the same source to the chamber air. The dust-air partition favored the less volatile OPFRs in the house dust, whereas the emission from the source favored the volatile chemicals. Volatility of the chemicals had much less effect on dust-source partitioning than on dust-air partitioning. The results from this work improve our understating of the fate and mass transfer mechanisms between OPFRs sources, indoor air, surface, and dust.
Collapse
Affiliation(s)
- Xiaoyu Liu
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Measurement & Modeling, Research Triangle Park, NC, 27711, USA.
| | - Edgar Folk
- Jacobs, Critical Mission Solutions, EPA - Research Laboratory Support, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
5
|
Wang Y, Yang X, Liu Y, Zhang Q, Xiao H, Wang Y, Yao Y, Sun H. A low-volume air sampling method for legacy and novel brominated flame retardants in indoor environment using a newly developed sorbent mixture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111837. [PMID: 33422837 DOI: 10.1016/j.ecoenv.2020.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/04/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Brominated flame retardants (BFRs) are a series of stable and outstanding flame retardants bringing human exposure risks in indoor environment. However, sampling methods now available for BFRs are solvent-consuming and relatively complicated. This study provides a new option of low-volume air sampling device using cartridges with a sorbent mixture for different types of legacy and novel BFRs. In this study, we found that HC-C18 sorbent is most suitable for polybrominated diphenyl ethers (PBDEs) and novel BFRs (NBFRs) enrichment, and that NH2 for hexabromocyclododecanes (HBCDs). The sorbent mixture was optimized using a complex of HC-C18 and NH2 sorbents with elution recovery of 69.4% ± 7.9-117% ± 10%, pumping-through recovery of 84.5% ± 7.9-127% ± 36%, and breakthrough recovery of 70.8% ± 3.4-118% ± 6% for PBDEs, NBFRs, and HBCDs in indoor air. A sequential elution was also achieved using hexane for PBDEs and NBFRs and ethyl acetate for HBCDs. The method was validated with field sampling at nine student dormitory rooms. For legacy BFRs, all the isomers of HBCDs were detected in the air of nine rooms with the median concentrations of 91, 33, and 25 pg/m3 for (±)α-HBCD, (±)β-HBCD, (±)γ-HBCD, respectively, while PBDEs were hardly detected. In contrast, NBFRs were detected at total concentrations of 15-811 pg/m3. Pentabromotoluene (PBT) was the most frequently detected NBFRs with a median concentration of 4 pg/m3, followed by EHTBB at 56 pg/m3 and HBBZ at 21 pg/m3. For the risk assessment, the total hazard index value for air inhalation of BFRs was estimated at 6.1⎓10-4-0.35, which are consistently lower than 1, indicating no immediate health risk, while their long-term effects remain worth concerns.
Collapse
Affiliation(s)
- Yongyue Wang
- College of Environmental Science and Engineering, Nankai University, MOE Key Laboratory of Environmental Pollution Processes and Criteria, Nankai University, Tianjin 300071, China
| | - Xiaomeng Yang
- College of Environmental Science and Engineering, Nankai University, MOE Key Laboratory of Environmental Pollution Processes and Criteria, Nankai University, Tianjin 300071, China
| | - Yuzhe Liu
- College of Environmental Science and Engineering, Nankai University, MOE Key Laboratory of Environmental Pollution Processes and Criteria, Nankai University, Tianjin 300071, China
| | - Qing Zhang
- College of Environmental Science and Engineering, Nankai University, MOE Key Laboratory of Environmental Pollution Processes and Criteria, Nankai University, Tianjin 300071, China
| | - Hongyan Xiao
- College of Environmental Science and Engineering, Nankai University, MOE Key Laboratory of Environmental Pollution Processes and Criteria, Nankai University, Tianjin 300071, China
| | - Yu Wang
- College of Environmental Science and Engineering, Nankai University, MOE Key Laboratory of Environmental Pollution Processes and Criteria, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- College of Environmental Science and Engineering, Nankai University, MOE Key Laboratory of Environmental Pollution Processes and Criteria, Nankai University, Tianjin 300071, China.
| | - Hongwen Sun
- College of Environmental Science and Engineering, Nankai University, MOE Key Laboratory of Environmental Pollution Processes and Criteria, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Maddela NR, Venkateswarlu K, Kakarla D, Megharaj M. Inevitable human exposure to emissions of polybrominated diphenyl ethers: A perspective on potential health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115240. [PMID: 32698055 DOI: 10.1016/j.envpol.2020.115240] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 05/24/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as flame retardants in many household materials such as electrical and electronic devices, furniture, textiles, plastics, and baby products. Though the use of PBDEs like penta-, octa- and deca-BDE greatly reduces the fire damage, indoor pollution by these toxic emissions is ever-growing. In fact, a boom in the global market projections of PBDEs threatens human health security. Therefore, efforts are made to minimize PBDEs pollution in USA and Europe by encouraging voluntary phasing out of the production or imposing compelled regulations through Stockholm Convention, but >500 kilotons of PBDEs still exist globally. Both 'environmental persistence' and 'bioaccumulation tendencies' are the hallmarks of PBDE toxicities; however, both these issues concerning household emissions of PBDEs have been least addressed theoretically or practically. Critical physiological functions, lipophilicity and toxicity, trophic transfer and tissue specificities are of utmost importance in the benefit/risk assessments of PBDEs. Since indoor debromination of deca-BDE often yields many products, a better understanding on their sorption propensity, environmental fate and human toxicities is critical in taking rigorous measures on the ever-growing global deca-BDE market. The data available in the literature on human toxicities of PBDEs have been validated following meta-analysis. In this direction, the intent of the present review was to provide a critical evaluation of the key aspects like compositional patterns/isomer ratios of PBDEs implicated in bioaccumulation, indoor PBDE emissions versus human exposure, secured technologies to deal with the toxic emissions, and human toxicity of PBDEs in relation to the number of bromine atoms. Finally, an emphasis has been made on the knowledge gaps and future research directions related to endurable flame retardants which could fit well into the benefit/risk strategy.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador; Facultad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Dhatri Kakarla
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
7
|
Shinohara N, Uchino K. Diethylhexyl phthalate (DEHP) emission to indoor air and transfer to house dust from a PVC sheet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134573. [PMID: 32000312 DOI: 10.1016/j.scitotenv.2019.134573] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/29/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Diethylhexyl phthalate (DEHP) emission to air and transfer to house dust from a polyvinyl chloride (PVC) sheet were quantified for periods of 1, 3, 7, and 14 days using a passive flux sampler (PFS). Japanese Industrial Standards (JIS) test powders class 15 was used as the test house dust in settled weights of 0.3, 1, 3, and 12 mg/cm2. DEHP concentrations in the surface air on the PVC sheet were estimated as 2.6-3.3 μg/m3 according to an emission test without dust. Although DEHP transfer rates from the PVC sheet to the house dust decreased over time, the adsorption did not reach an equilibrium state within 14 days. The transfer rates per dust weight increased with decreasing dust weight on the PVC sheet. The transfer rates per PVC sheet area increased nonlinearly with increasing dust weight on the PVC sheet. DEHP emission from a PVC sheet to air was one to three orders of magnitude lower than DEHP transfer from a PVC sheet to dust. In the case of 0.3 mg/cm2 of settled house dust for 7 days, the emission rates to air were 35, 15, 9.1, 6.4, and 3.8 μg/m2/h for a diffusion distance of 0.90, 1.85, 2.75, 3.80, and 5.75 mm, respectively, and the transfer rate to dust was 5.3 × 102 μg/m2/h (no difference among the five diffusion distances). Compared to residents who clean the floor every day, exposure to DEHP in house dust could be 10 times higher for residents who clean the floor once every two weeks based on the time-weighted average concentrations in house dust.
Collapse
Affiliation(s)
- Naohide Shinohara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Kanako Uchino
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
8
|
Jian K, Zhao L, Ya M, Zhang Y, Su H, Meng W, Li J, Su G. Dietary intake of legacy and emerging halogenated flame retardants using food market basket estimations in Nanjing, eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113737. [PMID: 31838397 DOI: 10.1016/j.envpol.2019.113737] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/22/2019] [Accepted: 12/04/2019] [Indexed: 05/06/2023]
Abstract
Food products are inevitably contaminated by flame retardants throughout their lifecycle (i.e., during production, use, and disposal). In order to evaluate the dietary intake of legacy and emerging halogenated flame retardants (HFRs) in typical market food in China, we investigate the distribution and profile of 27 legacy polybrominated diphenyl ethers (PBDEs) and 16 emerging HFRs (EHFRs) in 9 food categories (meat, poultry, aquatic food, eggs, dairy products, cereals, vegetables, nuts and fruits, and sugar). A total of 105 food samples collected from three markets in Nanjing, eastern China were included for evaluation. The highest concentrations of PBDEs and EHFRs were found in aquatic foods (means of 0.834 ng/g wet weight (ww) and 0.348 ng/g ww, respectively), and the lowest concentrations were found in sugar (means of 0.020 ng/g ww for PBDEs and 0.014 ng/g ww for EHFRs). 2,2',4-tribromodiphenyl ether (BDE-17), a legacy HFR, and hexabromobenzene (HBBz), an EHFR, were the predominant pollutants in the investigated food samples. Concentrations of HBBz and 2,3-dibromopropyl tribromophenyl ether (DPTE) were comparable to those of some PBDEs in certain food samples. The concentrations of the total EHFRs and total PBDEs found in animal-based food samples were significantly greater than those in plant-based food samples. Comparison of the estimated total dietary intake of HFRs and their corresponding non-cancer reference dose (United States Environmental Protection Agency) suggests a low overall health risk. To the best of our knowledge, the present study is the first to simultaneously determine 27 PBDEs and 16 EHFRs in representative foods from Chinese markets. BDE-17, HBBz, and DPTE were the predominant congeners among the 43 investigated HFRs and meat and aquatic foods were the primary sources of PBDEs and EHFRs to the total local dietary intake.
Collapse
Affiliation(s)
- Kang Jian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Luming Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Miaolei Ya
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Huijun Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Weikun Meng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China.
| |
Collapse
|
9
|
Lan J, Shen Z, Gao W, Liu A. Occurrence of bisphenol-A and its brominated derivatives in tributary and estuary of Xiaoqing River adjacent to Bohai Sea, China. MARINE POLLUTION BULLETIN 2019; 149:110551. [PMID: 31543489 DOI: 10.1016/j.marpolbul.2019.110551] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
The chemical industrial zone located along the Xiaoqing River wetlands adjacent to Bohai Sea is one of the largest production bases for brominated flame retardants in China. Herein, high levels of bisphenol-A, tetrabromobisphenol-A (TBBPA), tribromobisphenol-A, dibromobisphenol-A, and monobromobisphenol-A were detected in sediment, soil, and water samples of this zone in the range of below method detection limit (<MDL)-5.45 × 106 ng/kg dw, <MDL-8.37 × 104 ng/kg dw, and <MDL-5.59 × 102 ng/L, respectively. They were mainly buried in sediments as their highest levels in sediment samples. The small concentration fluctuation between water samples retrieved in the upstream and downstream zones is likely attributed to seawater backflow. The nearby chemical factories were point pollution sources and the less brominated analogs are largely from debromination of TBBPA. High pollution levels and the ecological risks of these pollutants along the Xiaoqing estuary to Bohai Sea need to be further assessed in future studies.
Collapse
Affiliation(s)
- Jing Lan
- Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhaoshuang Shen
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Wei Gao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Aifeng Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| |
Collapse
|