1
|
Barkaszi MJ, Kelly CJ. Analysis of protected species observer data: Strengths, weaknesses, and application in the assessment of marine mammal responses to seismic surveys in the northern Gulf of Mexico 2002-2015. PLoS One 2024; 19:e0300658. [PMID: 38512955 PMCID: PMC10956755 DOI: 10.1371/journal.pone.0300658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Visual observation data collected by protected species observers (PSOs) is required per regulations stipulated in Notices to Lessees (NTLs) and geophysical survey Permits (Form BOEM-0328) issued to seismic operators in the Gulf of Mexico (GOM). Here, data collected by certified and trained PSOs during seismic surveys conducted between 2002-2015 were compiled and analyzed to assess utility in assessing marine mammal responses to seismic noise and effectiveness of required mitigation measures. A total of 3,886 agency-required bi-weekly PSO Effort and Sightings reports were analyzed comprising 598,319 hours of PSO visual effort and 15,117 visual sighting records of marine mammals. The observed closest point of approach (CPA) distance was statistically compared across five species groupings for four airgun activity levels (full, minimum source, ramp up, silent). Whale and dolphin detections were significantly farther from airgun array locations during full power operations versus silence, indicating some avoidance response to full-power operations. Dolphin CPA distances were also significantly farther from airguns operating at minimum source than silence. Blackfish were observed significantly farther from the airgun array during ramp up versus both full and minimum source activities. Blackfish were observed significantly closer to the airgun array during silent activities versus at full, minimum source, and ramp up activities. Beaked whales had the largest mean CPA for detection distance compared to all other species groups. Detection distances for beaked whales were not significantly differences between full and silent operations; however, the sample size was very low. Overall results are consistent with other studies indicating that marine mammals may avoid exposure to airgun sounds based on observed distance from the seismic source during specified source activities. There was geographic variability in sighting rates associated with specific areas of interest within the GOM. This study demonstrates that agency required PSO reports provide a robust and useful data set applicable to impact assessments; management, policy and regulatory decision making; and qualitative input for regional scientific, stock assessment and abundance studies. However, several improvements in content and consistency would facilitate finer-scale analysis of some topics (e.g., effort associated with specific activities, observer biases, sound field estimation) and support statistical comparisons that could provide further insight into marine mammal responses and mitigation efficacy.
Collapse
Affiliation(s)
- Mary Jo Barkaszi
- CSA Ocean Sciences Inc., Okeechobee, FL, United States of America
| | | |
Collapse
|
2
|
Rutenko AN, Zykov MM, Gritsenko VA, Yu Fershalov M, Jenkerson MR, Manulchev DS, Racca R, Nechayuk VE. Acoustic monitoring and analyses of air gun, pile driving, vessel, and ambient sounds during the 2015 seismic surveys on the Sakhalin shelf. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:744. [PMID: 36255507 PMCID: PMC9579097 DOI: 10.1007/s10661-022-10021-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/10/2021] [Indexed: 05/31/2023]
Abstract
During the summer of 2015, four 4D seismic surveys were conducted on the northeastern Sakhalin shelf near the feeding grounds of the Korean-Okhotsk (western) gray whale (Eschrichtius robustus) population. In addition to the seismic surveys, onshore pile driving activities and vessel operations occurred. Forty autonomous underwater acoustic recorders provided data in the 2 Hz to15 kHz frequency band. Recordings were analyzed to evaluate the characteristics of impulses propagating from the seismic sources. Acoustic metrics analyzed comprised peak sound pressure level (PK), mean square sound pressure level (SPL), sound exposure level (SEL), T100%, T90% (the time intervals that contain the full and 90% of the energy of the impulse), and kurtosis. The impulses analyzed differed significantly due to the variability and complexity of propagation in the shallow water of the northeast Sakhalin shelf. At larger ranges, a seismic precursor propagated in the seabed ahead of the acoustic impulse, and the impulses often interfered with each other, complicating analyses. Additional processing of recordings allowed evaluation and documentation of relevant metrics for pile driving, vessel sounds, and ambient background levels. The computed metrics were used to calibrate acoustic models, generating time resolved estimates of the acoustic levels from seismic surveys, pile driving, and vessel operations on a gray whale distribution grid and along observed gray whale tracks. This paper describes the development of the metrics and the calibrated acoustic models, both of which will be used in work quantifying gray whale behavioral and distribution responses to underwater sounds and to determine whether these observed responses have the potential to impact important parameters at the population level (e.g., reproductive success).
Collapse
Affiliation(s)
- Alexander N Rutenko
- Far East Branch, V.I. Il'ichev Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | | | - Vladimir A Gritsenko
- Far East Branch, V.I. Il'ichev Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Mikhail Yu Fershalov
- Far East Branch, V.I. Il'ichev Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Michael R Jenkerson
- ExxonMobil Exploration Company, Spring, TX, 77389, USA.
- , Lucas, TX, 75002, USA.
| | - Denis S Manulchev
- Far East Branch, V.I. Il'ichev Pacific Oceanological Institute, Russian Academy of Sciences, Vladivostok, 690041, Russia
| | - Roberto Racca
- JASCO Applied Sciences Ltd, Victoria, BC, V8Z 7X8, Canada
| | | |
Collapse
|
3
|
Aerts L, Jenkerson MR, Nechayuk VE, Gailey G, Racca R, Blanchard AL, Schwarz LK, Melton HR. Seismic surveys near gray whale feeding areas off Sakhalin Island, Russia: assessing impact and mitigation effectiveness. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:746. [PMID: 36255494 PMCID: PMC9579104 DOI: 10.1007/s10661-022-10016-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 04/21/2021] [Indexed: 05/25/2023]
Abstract
In 2015, two oil and gas companies conducted seismic surveys along the northeast coast of Sakhalin Island, Russia, near western gray whale (Eschrichtius robustus) feeding areas. This population of whales was listed as Critically Endangered at the time of the operations described here but has been reclassified as Endangered since 2018. The number and duration of the 2015 seismic surveys surpassed the level of previous seismic survey activity in this area, elevating concerns regarding disturbance of feeding gray whales and the potential for auditory injury. Exxon Neftegas Limited (ENL) developed a mitigation approach to address these concerns and, more importantly, implemented a comprehensive data collection strategy to assess the effectiveness of this approach. The mitigation approach prioritized completion of the seismic surveys closest to the nearshore feeding area as early in the season as possible, when fewer gray whales would be present. This was accomplished by increasing operational efficiency through the use of multiple seismic vessels and by establishing zones with specific seasonal criteria determining when air gun shutdowns would be implemented. These zones and seasonal criteria were based on pre-season modeled acoustic footprints of the air gun array and on gray whale distribution data collected over the previous 10 years. Real-time acoustic and whale sighting data were instrumental in the implementation of air gun shutdowns. The mitigation effectiveness of these shutdowns was assessed through analyzing short-term behavioral responses and shifts in gray whale distribution due to sound exposure. The overall mitigation strategy of an early survey completion was assessed through bioenergetics models that predict how reduced foraging activity might affect gray whale reproduction and maternal survival. This assessment relied on a total of 17 shore-based and 5 vessel-based teams collecting behavior, distribution, photo-identification, prey, and acoustic data. This paper describes the mitigation approach, the implementation of mitigation measures using real-time acoustic and gray whale location data, and the strategy to assess impacts and mitigation effectiveness.
Collapse
Affiliation(s)
| | | | | | - Glenn Gailey
- Cetacean EcoSystem Research, Lacey, WA, 98512, USA
| | - Roberto Racca
- JASCO Applied Sciences, Victoria, BC, V8Z 7X8, Canada
| | | | - Lisa K Schwarz
- Ocean Sciences and Institute of Marine Sciences, University of California, Santa Cruz, CA, 95060, USA
| | | |
Collapse
|