1
|
Du H, Lu X, Han X. Determination of priority control factors for risk management of heavy metal(loid)s in park dust in Mianyang City. Sci Rep 2024; 14:27440. [PMID: 39523427 PMCID: PMC11551146 DOI: 10.1038/s41598-024-79157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
In order to determine the priority control elements and sources of heavy metal(loid)s (HMs) pollution in park dust, this study collected dust samples from 25 parks in the urban area of Mianyang City and measured the contents of 10 HMs. Based on Monte Carlo simulation, the probabilistic pollution levels and ecological-health risks of HMs were assessed. We found that the average contents of Zn, Co, Pb, and Cr were much higher than their background values in local soil and were influenced by artificial activities. The pollution assessment found that 5 parks were moderately polluted. The comprehensive pollution of HMs in the dust was mainly caused by Zn and Cr, and industrial source was the main contributor to Zn and Cr pollution. The contribution of As, Co, and Pb to the comprehensive ecological risk was high, accounting for 54.6%. Co, Pb, and As were the priority control HMs of ecological risk, while mixed source and industrial source were the priority control sources. HMs presented potential carcinogenic health risks to both children and adults. The non-carcinogenic risk to adults was within safety level, while some parks showed non-carcinogenic risk to children, which should be paid attention to. The source-specific health risk assessment showed that Cr and As were the priority control HMs for human health, while mixed source and industrial source were the priority control sources.
Collapse
Affiliation(s)
- Huaming Du
- School of Resource and Environment Engineering, Mianyang Normal University, Mianyang, 621000, China
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Xinwei Lu
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiufeng Han
- College of Ecology and Environment, Baotou Teachers' College, Baotou, 014000, China
| |
Collapse
|
2
|
Kao CS, Wang YL, Jiang CB, Tai PJ, Chen YH, Chao HJ, Lo YC, Hseu ZY, Hsi HC, Chien LC. Assessment of sources and health risks of heavy metals in metropolitan household dust among preschool children: The LEAPP-HIT study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120015. [PMID: 38194873 DOI: 10.1016/j.jenvman.2024.120015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/27/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024]
Abstract
The most common construction material used in Taiwan is concrete, potentially contaminated by geologic heavy metals (HMs). Younger children spend much time indoors, increasing HM exposure risks from household dust owing to their behaviors. We evaluated arsenic (As), cadmium (Cd), and lead (Pb) concentrations in fingernails among 280 preschoolers between 2017 and 2023. We also analyzed HM concentrations, including As, Cd, Pb, chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn), in 90 household dust and 50 road dust samples from a residential area where children lived between 2019 and 2021 to deepen the understanding of sources and health risks of exposure to HMs from household dust. The average As, Cd, and Pb concentrations in fingernails were 0.12 ± 0.06, 0.05 ± 0.05, and 0.95 ± 0.77 μg/g, respectively. Soil parent materials, indoor construction activities, vehicle emissions, and mixed indoor combustion were the pollution sources of HMs in household dust. Higher Cr and Pb levels in household dust may pose non-carcinogenic risks to preschoolers. Addressing indoor construction and soil parent materials sources is vital for children's health. The finding of the present survey can be used for indoor environmental management to reduce the risks of HM exposure and avoid potential adverse health effects for younger children.
Collapse
Affiliation(s)
- Chi-Sian Kao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Ying-Lin Wang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan; Department of Medicine, MacKay Medical College, SanZhi District, New Taipei City, Taiwan
| | - Pei-Ju Tai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Hsing-Jasmine Chao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Zeng-Yei Hseu
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hsing-Cheng Hsi
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan.
| | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|