1
|
Xie J, Lan R, Zhang L, Yu J, Liu X, You Z, Yang F, Lin T. Global occurrence, food web transfer, and human health risks of polycyclic aromatic hydrocarbons in biota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177969. [PMID: 39652991 DOI: 10.1016/j.scitotenv.2024.177969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/15/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread organic pollutants that pose significant health risks due to their bioaccumulation in the biota. This study examines the global distribution of PAHs in biota, identifies key factors influencing using boosted regression tree (BRT) models, analyzes their transfer through trophic magnification factors (TMF), and evaluates health risks using the EPA risk assessment model. Research on PAHs has grown from 1978 to 2023, peaking in 2021, with 171 out of 241 studies (71.1 %) focusing on marine ecosystems. The highest PAH concentrations are observed in the Mediterranean Sea, Red Sea, and North American coastal regions, primarily influenced by industrial and human activities, such as factory emissions and ship transport. BRT analysis shows region factors and feeding habitats significantly influence PAH levels. TMF analysis shows that biodilution is the main mechanism for PAH attenuation, with concentrations decreasing as trophic levels increase. Additionally, health risk assessment further illustrate that toxicity equivalent (TEQ) values are highest in Egypt and Turkey. Across all populations in Egypt, the United States, Turkey, Portugal, and China, as well as children in Portugal and Sweden, there are potential risks from aquatic product consumption (10-6 < CRI < 10-4), with CRI values positively correlated with liver cancer incidence. While hazard quotients (HQ) < 1 suggest overall safety, higher obesity risks are noted, particularly among women and adolescents.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Ruo Lan
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jun Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xinran Liu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Zhiyang You
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Fen Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tian Lin
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
2
|
Qian W, Yang Y, Xinyue D, Hanqi L, Lanlan C, Wenhui H, Juan-Ying L. Reducing baseline toxicity in fishery product-related sediments from land to sea: Region-specific solutions are required. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174024. [PMID: 38906300 DOI: 10.1016/j.scitotenv.2024.174024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Eastern China is a major producer of fishery products (including inland aquaculture, coastal mariculture, and coastal fishing products). The quality of the products is affected by hydrophobic organic contaminants (HOCs) in the sediments. Based on in-vitro luminescent bacterial assay, the baseline toxicity (BEQBio) of 56 common HOCs were assessed in the present study. Specifically, the BEQBio of sediments declined from land (31-400 mg/kg) to sea (9.1-270 mg/kg). However, the toxicity contribution explained by the HOCs increased gradually from land (0.70 %) to sea (10 %) using Iceberg Modeling. In the inland pond, current use HOCs (pyrethroid pesticide (PEs), organic tin (OTCs), and antibiotic) exhibited considerable concentrations, although their toxicity contribution was very small (0.076 %), thus more regulations on the use of HOCs should be proposed and further screening is needed to confirm the major toxicants. In coastal mariculture area, the toxicity contribution of current use HOCs further declined (0.010 %), whereas environmental background HOCs, such as polycyclic aromatic hydrocarbons (PAHs), became increasingly significant, with the contribution ratio increasing from 0.37 % to 2.4 %. To minimize the negative impacts of PAHs, optimization of energy structure in transportation and coastal industry is required. In the coastal fishing area, the phased-out persistent organic pollutants (POPs) remained a major concern, in terms of both concentration and toxicity contribution. The phased-out POPs explained 7.0 % of the toxic effects of the sediments from the coastal fishing area, due to historical residue, industrial emissions, and their high toxicities. For this reason, it is critical to improve the relevant emission regulations and standards, so as to eventually reduce the unintentional discharges of POPs.
Collapse
Affiliation(s)
- Wang Qian
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Yu Yang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Dong Xinyue
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - Liu Hanqi
- East China Sea Ecological Center, MNR (Ministry of Natural Resources), Shanghai 201206, China
| | - Chu Lanlan
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China
| | - He Wenhui
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China
| | - Li Juan-Ying
- College of Oceanography and Ecological Science, Shanghai Ocean University, Pudong, Shanghai 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai 201702, China.
| |
Collapse
|
3
|
Sharifiarab G, Ahmadi M, Shariatifar N, Ariaii P. Investigating the effect of type of fish and different cooking methods on the residual amount of polycyclic aromatic hydrocarbons (PAHs) in some Iranian fish: A health risk assessment. Food Chem X 2023; 19:100789. [PMID: 37780318 PMCID: PMC10534125 DOI: 10.1016/j.fochx.2023.100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 10/03/2023] Open
Abstract
The aim of this study was to assess the level of PAHs and associated health risks in different types of fish cooked with different methods, using the MSPE-GC/MS technique (magnetic solid phase extraction with gas chromatography/mass spectrometry). The limits of detection (LODs), limits of quantification (LOQs) and recovery percentages ranged from 0.1 to 0.63 μg/kg, 0.3-1.89 μg/kg, and 93.7 to 102.6%, respectively. The results showed that the mean of ƩPAHs in all samples was 20.31 ± 6.60 µg/kg. Additionally, PAH4 and BaP levels in all samples were 4.58 ± 1.40 and 1.08 ± 0.36 µg/kg, respectively, which were below the European Union (EU) standard level (12 and 2 µg/kg, respectively). The results showed that among 5 types of fish, starry sturgeon had highest average total PAHs (13.24 ± 1.84 µg/kg), while Caspian Sea sprat had the lowest average total PAHs (1.24 ± 0.8 µg/kg). In terms of cooking methods (charcoal-grilled fish, fried fish and oven-grilled fish), charcoal-grilled fish had the highest average total PAH level at 25.41 ± 7.31 µg/kg, while the lowest average total PAH was found in the raw fish sample at 16.44 ± 4.63 µg/kg. The Monte Carlo Simulation was used to determine the 95% ILCRs (Incremental Lifetime Cancer Risk) due to ingestion of fish. The results showed that the ILCR for adults was 2.85E-9, while for children it was 1.32E-8. Therefore, based on these findings, it can be concluded that the consumption of fish cooked with different methods does not pose a risk to human health in terms of the amount of PAHs (ILCR < 1 × 10-4).
Collapse
Affiliation(s)
- Gholamali Sharifiarab
- Department of Food Hygiene, Ayatollah Amoli Branch, Islamic Azad Uneversity, Amol, Iran
| | - Mohammad Ahmadi
- Department of Food Hygiene, Ayatollah Amoli Branch, Islamic Azad Uneversity, Amol, Iran
| | - Nabi Shariatifar
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Peiman Ariaii
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad Uneversity, Amol, Iran
| |
Collapse
|
4
|
Liu B, Gao L, Ding L, Lv L, Yu Y. Trophodynamics and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in marine food web from Laizhou Bay, China. MARINE POLLUTION BULLETIN 2023; 194:115307. [PMID: 37478788 DOI: 10.1016/j.marpolbul.2023.115307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023]
Abstract
Here, we collected 16 species (n = 298) from Laizhou Bay, China to investigate the trophodynamics, bioaccumulation and cancer risks of polycyclic aromatic hydrocarbons (PAHs). Results demonstrated that naphthalene was the most abundant PAH, followed by phenanthrene and fluorene in the marine organisms. The sum of 16 PAHs concentrations (Ʃ16PAHs) ranked with algae (19,435 ng·g-1 lipid weight, lw) > benthonic animals (6599 ng·g-1 lw) > fish (1760 ng·g-1 lw). Combustion and oil spill are two primary sources, contributing 60.3 % and 39.7 % of Ʃ16PAHs, respectively. High values of log BAF were found for 4-6 rings PAHs. Algae and benthonic animals showed a high ability to accumulate 2-4 rings PAHs and 5-6 rings PAHs, respectively. A biodilution pattern for PAHs was found in the marine food web. The carcinogenic risks of some benthos and fish were higher than 1 × 10-6, threatening resident health by consumption of these seafoods.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Lei Gao
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Lingjie Ding
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Linyang Lv
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
5
|
Zhao Z, He W, Wu R, Xu F. Distribution and Relationships of Polycyclic Aromatic Hydrocarbons (PAHs) in Soils and Plants near Major Lakes in Eastern China. TOXICS 2022; 10:toxics10100577. [PMID: 36287857 PMCID: PMC9607041 DOI: 10.3390/toxics10100577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 05/21/2023]
Abstract
The distributions and correlations among polycyclic aromatic hydrocarbons (PAHs) in soils and plants were analyzed. In this study, 9 soil samples and 44 plant samples were collected near major lakes (Hongze Lake, Luoma Lake, Chaohu, Changhu, Danjiangkou Reservoir, Wuhan East Lake, Longgan Lake, Qiandao Lake and Liangzi Lake) in eastern China. The following results were obtained: The total contents of PAHs in soil varied from 99.17 to 552.10 ng/g with an average of 190.35 ng/g, and the total contents of PAHs in plants varied from 122.93 to 743.44 ng/g, with an average of 274.66 ng/g. The PAHs in soil were dominated by medium- and low-molecular-weight PAHs, while the PAHs in plants were dominated by low-molecular-weight PAHs. The proportion of high-molecular-weight PAHs was the lowest in both soil and plants. Diagnostic ratios and principal component analysis (PCA) identified combustion as the main source of PAHs in soil and plants. The plant PAH monomer content was negatively correlated with Koa. Acenaphthylene, anthracene, benzo[k]fluoranthene, benzo[b]fluoranthene and dibenzo[a,h]anthracene were significantly correlated in plants and soil. In addition, no significant correlation between the total contents of the 16 PAHs and the content of high-, medium-, and low-molecular-weight PAHs in plants and soil was found. Bidens pilosa L. and Gaillardia pulchella Foug in the Compositae family and cron in the Poaceae family showed relatively stronger accumulation of PAHs, indicating their potential for phytoremediation.
Collapse
Affiliation(s)
- Zhiwei Zhao
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei He
- Beijing Key Laboratory of Water Resources & Environmental Engineering, China University of Geosciences (Beijing), Beijing100083, China
| | - Ruilin Wu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fuliu Xu
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Correspondence:
| |
Collapse
|