1
|
Cattaneo N, Zarantoniello M, Conti F, Tavano A, Frontini A, Sener I, Cardinaletti G, Olivotto I. Natural-based solutions to mitigate dietary microplastics side effects in fish. CHEMOSPHERE 2024; 367:143587. [PMID: 39433100 DOI: 10.1016/j.chemosphere.2024.143587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Dietary microplastics (MPs) can be consumed by fish, crossing through the gastrointestinal tract. MPs smaller than 20 μm can easily translocate to other organs, such as liver, commonly triggering oxidative stress in fish. Given the current unlikelihood of their short-term elimination, strategies to mitigate MPs-related issues on fish are of considerable interest to the scientific community. In the present study, to reduce both the dietary MPs-induced oxidative stress and the accumulation of MPs, the effectiveness of microencapsulated astaxanthin (ASX) was evaluated in zebrafish (Danio rerio). Specifically, zebrafish were reared from larvae to adults (6 months) and fed diets containing MPs different in range-size (polymer A: 1-5 μm; polymer B: 40-47 μm) at different concentrations (50 or 500 mg/kg). After this period, fish from each experimental group were divided in two sub-groups that were fed, for an additional month, with the previous diets or with the same diets containing implemented with microencapsulated ASX (7 g/kg), respectively. Results showed that microencapsulated ASX was able to counteract the negative effects caused by MPs different in size. Particularly, in zebrafish fed diets containing polymer B microbeads, microencapsulated astaxanthin was able to restore the intestinal epithelium, affected by the abrasive role of MPs during gut transit. Differently, in zebrafish fed diets containing polymer A microbeads, absorbed at intestinal level and translocated mainly to the liver, the microencapsulated ASX decreased the oxidative stress response and reduced the MPs accumulation in target organs due to the antioxidant and the coagulant properties of the ASX and microcapsules wall, respectively. Taken together, the results highlighted that the aquafeeds' implementation with microencapsulated astaxanthin is a prospective tool to prevent MPs-related issues in fish.
Collapse
Affiliation(s)
- N Cattaneo
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - M Zarantoniello
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - F Conti
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - A Tavano
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - A Frontini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - I Sener
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - G Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2, 33100, Udine, Italy.
| | - I Olivotto
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
2
|
Zhao B, Richardson RE, You F. Microplastics monitoring in freshwater systems: A review of global efforts, knowledge gaps, and research priorities. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135329. [PMID: 39088945 DOI: 10.1016/j.jhazmat.2024.135329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The escalating production of synthetic plastics and inadequate waste management have led to pervasive microplastic (MP) contamination in aquatic ecosystems. MPs, typically defined as particles smaller than 5 mm, have become an emerging pollutant in freshwater environments. While significant concern about MPs has risen since 2014, research has predominantly concentrated on marine settings, there is an urgent need for a more in-depth critical review to systematically summarize the current global efforts, knowledge gaps, and research priorities for MP monitoring in freshwater systems. This review evaluates the current understanding of MP monitoring in freshwater environments by examining the distribution, characteristics, and sources of MPs, alongside the progression of analytical methods with quantitative evidence. Our findings suggest that MPs are widely distributed in global freshwater systems, with higher abundances found in areas with intense human economic activities, such as the United States, Europe, and China. MP abundance distributions vary across different water bodies (e.g., rivers, lakes, estuaries, and wetlands), with sampling methods and size range selections significantly influencing reported MP abundances. Despite great global efforts, there is still a lack of harmonized analyzing framework and understanding of MP pollution in specific regions and facilities. Future research should prioritize the development of standardized analysis protocols and open-source MP datasets to facilitate data comparison. Additionally, exploring the potential of state-of-the-art artificial intelligence for rapid, accurate, and large-scale modeling and characterization of MPs is crucial to inform effective strategies for managing MP pollution in freshwater ecosystems.
Collapse
Affiliation(s)
- Bu Zhao
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Fengqi You
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Systems Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Matias RS, Gomes S, Barboza LGA, Salazar D, Guilhermino L, Valente LMP. Microplastics in water, feed and tissues of European seabass reared in a recirculation aquaculture system (RAS). CHEMOSPHERE 2023; 335:139055. [PMID: 37268227 DOI: 10.1016/j.chemosphere.2023.139055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Plastic particles (PLs) are ubiquitous in aquatic ecosystems and aquaculture production is susceptible to contamination from external or endogenous sources. This study investigated PL presence in water, fish feed and body sites of 55 European seabass produced in a recirculating aquaculture system (RAS). Fish morphometric parameters and health status biomarkers were determined. A total of 372 PLs were recovered from water (37.2 PL/L), 118 PLs from feed (3.9 PL/g), and 422 from seabass (0.7 PL/g fish; all body sites analysed). All 55 specimens had PLs in at least two of the four body sites analysed. Concentrations were higher in the gastrointestinal tract (GIT; 1.0 PL/g) and gills (0.8 PL/g) than in the liver (0.8 PL/g) and muscle (0.4 PL/g). PL concentration in GIT was significantly higher than in muscle. Black, blue, and transparent fibres made of man-made cellulose/rayon and polyethylene terephthalate were the most common PLs in water and seabass, while black fragments of phenoxy resin were the most common in feed. The levels of polymers linked to RAS components (polyethylene, polypropylene, and polyvinyl chloride) were low suggesting a limited contribution to the overall PL levels found in water and/or fish. The mean PL size recovered from GIT (930 μm) and gills (1047 μm) was significantly larger than those found in the liver (647 μm) and dorsal muscle (425 μm). Considering all body sites, PLs bioconcentrated in seabass (BCFFish >1) but their bioaccumulation did not occur (BAFFish <1). No significant differences were observed in oxidative stress biomarkers between fish with low (<7) and high (≥7) PL numbers. These findings suggest that fish produced in RAS are mainly exposed to MPs through water and feed. Further monitoring under commercial conditions and risk assessment are warranted to identify potential threats to fish and human health and define mitigating measures.
Collapse
Affiliation(s)
- Ricardo S Matias
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sónia Gomes
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luís Gabriel A Barboza
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Daniela Salazar
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Lúcia Guilhermino
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luisa M P Valente
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade Do Porto, Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|