1
|
Protti-Sánchez F, Mayer U, Rowland HM. In paired preference tests, domestic chicks innately choose the colour green over red, and the shape of a frog over a sphere when both stimuli are green. Anim Cogn 2023; 26:1973-1983. [PMID: 37610527 PMCID: PMC10769926 DOI: 10.1007/s10071-023-01821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
Many animals express unlearned colour preferences that depend on the context in which signals are encountered. These colour biases may have evolved in response to the signalling system to which they relate. For example, many aposematic animals advertise their unprofitability with red warning signals. Predators' innate biases against these warning colours have been suggested as one of the potential explanations for the initial evolution of aposematism. It is unclear, however, whether unlearned colour preferences reported in a number of species is truly an innate behaviour or whether it is based on prior experience. We tested the spontaneous colour and shape preferences of dark-hatched, unfed, and visually naive domestic chicks (Gallus gallus). In four experiments, we presented chicks with a choice between either red (a colour typically associated with warning patterns) or green (a colour associated with palatable cryptic prey), volume-matched spheres (representing a generalised fruit shape) or frogs (representing an aposematic animal's shape). Chicks innately preferred green stimuli and avoided red. Chicks also preferred the shape of a frog over a sphere when both stimuli were green. However, no preference for frogs over spheres was present when stimuli were red. Male chicks that experienced a bitter taste of quinine immediately before the preference test showed a higher preference for green frog-shaped stimuli. Our results suggest that newly hatched chicks innately integrate colour and shape cues during decision making, and that this can be augmented by other sensory experiences. Innate and experience-based behaviour could confer a fitness advantage to novel aposematic prey, and favour the initial evolution of conspicuous colouration.
Collapse
Affiliation(s)
- Francesca Protti-Sánchez
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745, Jena, Germany.
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, 38068, Rovereto, TN, Italy
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745, Jena, Germany
| |
Collapse
|
2
|
Eating More and Fighting Less: Social Foraging Is a Potential Advantage for Successful Expansion of Bird Source Populations. BIOLOGY 2022; 11:biology11101496. [PMID: 36290400 PMCID: PMC9598153 DOI: 10.3390/biology11101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Animals can expand distributions in response to climatic and environmental changes, but the potential expansive ability of a source population is rarely evaluated using designed experiments. Group foraging can increase survival in new environments, but it also increases intraspecific competition. The trade-off between benefit and conflict needs to be determined. The expanding Light-vented Bulbul Pycnonotus sinensis was used as a model to test mechanisms promoting successful expansion. Social foraging and its advantages were evaluated using lab-designed feeding trials. Consuming novel foods was compared between bulbuls and a sympatric, nonexpansive relative species, the finchbill Spizixos semitorques, from native areas at both solitary and social levels. Bulbuls increased their eating times when transferred from solitary to group, whereas social context did not affect finchbills. Bulbuls were significantly more likely to eat with their companions than finchbills when in a group. Thus, exploring food resources in a bulbul source population was facilitated by social context, indicating that social foraging is an important means by which birds successfully expand and respond to environmental changes. This research increases understanding of successful expansion mechanisms and will consequently help predict invasive potentials of alien species.
Collapse
|
3
|
Mouy H. Colours as aggregation signals in Lepidoptera: Are Heliconius Müllerian mimics? Evol Ecol 2022. [DOI: 10.1007/s10682-022-10183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Abstract
Aposematism and mimicry are complex phenomena which have been studied extensively; however, much of our knowledge comes from just a few focal groups, especially butterflies. Aposematic species combine a warning signal with a secondary defense that reduces their profitability as prey. Aculeate hymenopterans are an extremely diverse lineage defined by the modification of the ovipositor into a stinger which represents a potent defense against predators. Aculeates are often brightly colored and broadly mimicked by members of other arthropod groups including Diptera, Lepidoptera, Coleoptera, and Araneae. However, aculeates are surprisingly understudied as aposematic and mimetic model organisms. Recent studies have described novel pigments contributing to warning coloration in insects and identified changes in cis-regulatory elements as potential drivers of color pattern evolution. Many biotic and abiotic factors contribute to the evolution and maintenance of conspicuous color patterns. Predator distribution and diversity seem to influence the phenotypic diversity of aposematic velvet ants while studies on bumble bees underscore the importance of intermediate mimetic phenotypes in transition zones between putative mimicry rings. Aculeate hymenopterans are attractive models for studying sex-based intraspecific mimicry as male aculeates lack the defense conferred by the females’ stinger. In some species, evolution of male and female color patterns appears to be decoupled. Future studies on aposematic aculeates and their associated mimics hold great promise for unraveling outstanding questions about the evolution of conspicuous color patterns and the factors which determine the composition and distribution of mimetic communities.
Collapse
|
5
|
Eccles GR, Bethell EJ, Greggor AL, Mettke-Hofmann C. Individual Variation in Dietary Wariness Is Predicted by Head Color in a Specialist Feeder, the Gouldian Finch. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.772812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shifts in resource availability due to environmental change are increasingly confronting animals with unfamiliar food types. Species that can rapidly accept new food types may be better adapted to ecological change. Intuitively, dietary generalists are expected to accept new food types when resources change, while dietary specialists would be more averse to adopting novel food. However, most studies investigating changes in dietary breadth focus on generalist species and do not delve into potential individual predictors of dietary wariness and the social factors modulating these responses. We investigated dietary wariness in the Gouldian finch, a dietary specialist, that is expected to avoid novel food. This species occurs in two main head colors (red, black), which signal personality in other contexts. We measured their initial neophobic responses (approach attempts before first feed and latency to first feed) and willingness to incorporate novel food into their diet (frequency of feeding on novel food after first feed). Birds were tested in same-sex pairs in same and different head color pairings balanced across experiments 1 and 2. Familiar and novel food (familiar food dyed) were presented simultaneously across 5 days for 3 h, each. Gouldian finches fed on the familiar food first demonstrating food neophobia, and these latencies were repeatable. Birds made more approach attempts before feeding on novel than familiar food, particularly red-headed birds in experiment 1 and when partnered with a black-headed bird. Individuals consistently differed in their rate of incorporation of novel food, with clear differences between head colors; red-headed birds increased their feeding visits to novel food across experimentation equaling their familiar food intake by day five, while black-headed birds continually favored familiar food. Results suggest consistent among individual differences in response to novel food with red-headed birds being adventurous consumers and black-headed birds dietary conservatives. The differences in food acceptance aligned with responses to novel environments on the individual level (found in an earlier study) providing individuals with an adaptive combination of novelty responses across contexts in line with potential differences in movement patterns. Taken together, these novelty responses could aid in population persistence when faced with environmental changes.
Collapse
|
6
|
Ord TJ, Blazek K, White TE, Das I. Conspicuous animal signals avoid the cost of predation by being intermittent or novel: confirmation in the wild using hundreds of robotic prey. Proc Biol Sci 2021; 288:20210706. [PMID: 34102889 PMCID: PMC8187999 DOI: 10.1098/rspb.2021.0706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023] Open
Abstract
Social animals are expected to face a trade-off between producing a signal that is detectible by mates and rivals, but not obvious to predators. This trade-off is fundamental for understanding the design of many animal signals, and is often the lens through which the evolution of alternative communication strategies is viewed. We have a reasonable working knowledge of how conspecifics detect signals under different conditions, but how predators exploit conspicuous communication of prey is complex and hard to predict. We quantified predation on 1566 robotic lizard prey that performed a conspicuous visual display, possessed a conspicuous ornament or remained cryptic. Attacks by free-ranging predators were consistent across two contrasting ecosystems and showed robotic prey that performed a conspicuous display were equally likely to be attacked as those that remained cryptic. Furthermore, predators avoided attacking robotic prey with a fixed, highly visible ornament that was novel at both locations. These data show that it is prey familiarity-not conspicuousness-that determine predation risk. These findings replicated across different predator-prey communities not only reveal how conspicuous signals might evolve in high predation environments, but could help resolve the paradox of aposematism and why some exotic species avoid predation when invading new areas.
Collapse
Affiliation(s)
- Terry J. Ord
- Evolution and Ecology Research Centre and the School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Katrina Blazek
- School of Public Health, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas E. White
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
7
|
Powell EC, Taylor LA. Intraspecific variation in responses to aposematic prey in a jumping spider (
Phidippus regius
). Ethology 2020. [DOI: 10.1111/eth.13089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erin C. Powell
- Entomology and Nematology Department University of Florida Gainesville FL USA
| | - Lisa A. Taylor
- Entomology and Nematology Department University of Florida Gainesville FL USA
- Florida Museum of Natural History University of Florida Gainesville FL USA
| |
Collapse
|
8
|
Yamazaki Y, Pagani-Núñez E, Sota T, Barnett CRA. The truth is in the detail: predators attack aposematic prey with less aggression than other prey types. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Aposematic organisms are often unprofitable to predators (e.g. because of defensive chemicals) which they advertise with a conspicuous signal (e.g. bright and conspicuous colour signals). Aposematism is thought to reduce predation of prey because the colour signal increases the ability of predators to learn, recognize and remember the prey’s defensive properties. The efficacy of aposematism has been extensively documented in laboratory studies, although its benefits seem to be harder to demonstrate in the field. In this study, we compared the levels of partial and overall predation among four prey types (undefended and cryptic, undefended and warning coloured, defended and cryptic, and aposematic prey). Overall, predation of warning coloured and defended (aposematic) prey was lower than the predation for cryptic and undefended prey; however, it was the same as predation of cryptic and defended prey. Moreover, aposematic prey had higher levels of partial predation (where prey was not wholly consumed by the predator) and lower attack intensities. This suggests that prey were being taste sampled, but also might be better able to survive attacks. Therefore, the benefits of aposematism may lie not only in reducing outright predation, but also in altering a predator’s post-attack behaviour, thus leading to greater escape opportunities and post-attack survival of prey. These results reinforce the importance of examining predation in more detail rather than simply examining attack rates.
Collapse
Affiliation(s)
- Yuki Yamazaki
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Emilio Pagani-Núñez
- Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, People’s Republic of China
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Craig R A Barnett
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Hämäläinen L, Thorogood R. The signal detection problem of aposematic prey revisited: integrating prior social and personal experience. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190473. [PMID: 32420858 PMCID: PMC7331014 DOI: 10.1098/rstb.2019.0473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 11/12/2022] Open
Abstract
Ever since Alfred R. Wallace suggested brightly coloured, toxic insects warn predators about their unprofitability, evolutionary biologists have searched for an explanation of how these aposematic prey evolve and are maintained in natural populations. Understanding how predators learn about this widespread prey defence is fundamental to addressing the problem, yet individuals differ in their foraging decisions and the predominant application of associative learning theory largely ignores predators' foraging context. Here we revisit the suggestion made 15 years ago that signal detection theory provides a useful framework to model predator learning by emphasizing the integration of prior information into predation decisions. Using multiple experiments where we modified the availability of social information using video playback, we show that personal information (sampling aposematic prey) improves how predators (great tits, Parus major) discriminate between novel aposematic and cryptic prey. However, this relationship was not linear and beyond a certain point personal encounters with aposematic prey were no longer informative for prey discrimination. Social information about prey unpalatability reduced attacks on aposematic prey across learning trials, but it did not influence the relationship between personal sampling and discrimination. Our results suggest therefore that acquiring social information does not influence the value of personal information, but more experiments are needed to manipulate pay-offs and disentangle whether information sources affect response thresholds or change discrimination. This article is part of the theme issue 'Signal detection theory in recognition systems: from evolving models to experimental tests'.
Collapse
Affiliation(s)
- Liisa Hämäläinen
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, 40014, Finland
- Department of Biological Sciences, Macquarie University, NSW 2109, Australia
| | - Rose Thorogood
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki, Helsinki 00011, Finland
- Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00011, Finland
| |
Collapse
|
10
|
Contrast to background influences predation on aposematic but not cryptic artificial caterpillars in a Brazilian coastal shrubland. JOURNAL OF TROPICAL ECOLOGY 2020. [DOI: 10.1017/s026646742000005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAposematism and crypticity are visual defensive strategies against predation; however, the relative effectiveness of these two strategies to reduce the risk of predation is not yet fully understood. We evaluated the risk of predation for caterpillars with cryptic and aposematic colouration as well as the probability of predation relative to the natural variation of contrast with the substrate. We expected that the two models would experience similar predation attempts and that the contrast with the substrate would be negatively related to the predation on aposematic mimic models and positively to the predation of cryptic models. Overall, 224 models were laid out along a transect and exposed to predation for five consecutive days during winter and autumn. Daily predation was 11.0% (winter) and 4.8% (autumn). Significant differences were not observed between predation rates on the two model types (50.6% aposematic). Most of the predated models had arthropod marks (86.4%) and only 13.6% had bird marks. The chance of predation was higher the greater the contrast between the aposematic mimic model and the substrate, although no relationship was observed for the cryptic model. Our results suggest that the two colour patterns do not differ in their defensive effectiveness and that micro-habitat selection might define the predation risk on aposematic mimic caterpillars in environments dominated by arthropod predators.
Collapse
|
11
|
Hämäläinen L, Mappes J, Rowland HM, Thorogood R. Social information use about novel aposematic prey is not influenced by a predator's previous experience with toxins. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Johanna Mappes
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| | - Hannah M. Rowland
- Department of Zoology University of Cambridge Cambridge UK
- Max Planck Institute for Chemical Ecology Jena Germany
- Institute of Zoology Zoological Society of London London UK
| | - Rose Thorogood
- Department of Zoology University of Cambridge Cambridge UK
- HiLIFE Helsinki Institute of Life Sciences, University of Helsinki Helsinki Finland
- Research Programme in Organismal & Evolutionary Biology, Faculty of Biological and Environmental Sciences University of Helsinki Helsinki Finland
| |
Collapse
|
12
|
Lawrence JP, Rojas B, Fouquet A, Mappes J, Blanchette A, Saporito RA, Bosque RJ, Courtois EA, Noonan BP. Weak warning signals can persist in the absence of gene flow. Proc Natl Acad Sci U S A 2019; 116:19037-19045. [PMID: 31481623 PMCID: PMC6754554 DOI: 10.1073/pnas.1901872116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aposematic organisms couple conspicuous warning signals with a secondary defense to deter predators from attacking. Novel signals of aposematic prey are expected to be selected against due to positive frequency-dependent selection. How, then, can novel phenotypes persist after they arise, and why do so many aposematic species exhibit intrapopulation signal variability? Using a polytypic poison frog (Dendrobates tinctorius), we explored the forces of selection on variable aposematic signals using 2 phenotypically distinct (white, yellow) populations. Contrary to expectations, local phenotype was not always better protected compared to novel phenotypes in either population; in the white population, the novel phenotype evoked greater avoidance in natural predators. Despite having a lower quantity of alkaloids, the skin extracts from yellow frogs provoked higher aversive reactions by birds than white frogs in the laboratory, although both populations differed from controls. Similarly, predators learned to avoid the yellow signal faster than the white signal, and generalized their learned avoidance of yellow but not white. We propose that signals that are easily learned and broadly generalized can protect rare, novel signals, and weak warning signals (i.e., signals with poor efficacy and/or poor defense) can persist when gene flow among populations, as in this case, is limited. This provides a mechanism for the persistence of intrapopulation aposematic variation, a likely precursor to polytypism and driver of speciation.
Collapse
Affiliation(s)
- J P Lawrence
- Department of Biology, University of Mississippi, University, MS 38677;
| | - Bibiana Rojas
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland;
| | - Antoine Fouquet
- Laboratoire Evolution et Diversité Biologique, Centre National de la Recherche Scientifique, UMR5174, 31062 Toulouse cedex 9, France
| | - Johanna Mappes
- Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Annelise Blanchette
- Department of Biology, John Carroll University, University Heights, OH 44118
| | - Ralph A Saporito
- Department of Biology, John Carroll University, University Heights, OH 44118
| | | | - Elodie A Courtois
- Laboratoire Ecologie, Evolution, Interactions des Systèmes Amazoniens, Centre de Recherche de Montabo, Universite de Guyane, BP 70620, 97334 Cayenne cedex, France
| | - Brice P Noonan
- Department of Biology, University of Mississippi, University, MS 38677
| |
Collapse
|
13
|
Briolat ES, Burdfield‐Steel ER, Paul SC, Rönkä KH, Seymoure BM, Stankowich T, Stuckert AMM. Diversity in warning coloration: selective paradox or the norm? Biol Rev Camb Philos Soc 2019; 94:388-414. [PMID: 30152037 PMCID: PMC6446817 DOI: 10.1111/brv.12460] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
Abstract
Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: genetic mechanisms, differences among predators and predator behaviour, and alternative selection pressures upon the signal. The mechanisms producing warning coloration are also important. Detailed studies of the genetic basis of warning signals in some species, most notably Heliconius butterflies, are beginning to shed light on the genetic architecture facilitating or limiting key processes such as the evolution and maintenance of polymorphisms, hybridisation, and speciation. Work on predator behaviour is changing our perception of the predator community as a single homogenous selective agent, emphasising the dynamic nature of predator-prey interactions. Predator variability in a range of factors (e.g. perceptual abilities, tolerance to chemical defences, and individual motivation), suggests that the role of predators is more complicated than previously appreciated. With complex selection regimes at work, polytypisms and polymorphisms may even occur in Müllerian mimicry systems. Meanwhile, phenotypes are often multifunctional, and thus subject to additional biotic and abiotic selection pressures. Some of these selective pressures, primarily sexual selection and thermoregulation, have received considerable attention, while others, such as disease risk and parental effects, offer promising avenues to explore. As well as reviewing the existing evidence from both empirical studies and theoretical modelling, we highlight hypotheses that could benefit from further investigation in aposematic species. Finally by collating known instances of variation in warning signals, we provide a valuable resource for understanding the taxonomic spread of diversity in aposematic signalling and with which to direct future research. A greater appreciation of the extent of variation in aposematic species, and of the selective pressures and constraints which contribute to this once-paradoxical phenomenon, yields a new perspective for the field of aposematic signalling.
Collapse
Affiliation(s)
- Emmanuelle S. Briolat
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
| | - Emily R. Burdfield‐Steel
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
| | - Sarah C. Paul
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
- Department of Chemical EcologyBielefeld UniversityUniversitätsstraße 25, 33615, BielefeldGermany
| | - Katja H. Rönkä
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki, 00014Finland
| | - Brett M. Seymoure
- Department of BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
| | - Theodore Stankowich
- Department of Biological SciencesCalifornia State UniversityLong BeachCA 90840U.S.A.
| | - Adam M. M. Stuckert
- Department of BiologyEast Carolina University1000 E Fifth St, GreenvilleNC 27858U.S.A.
| |
Collapse
|
14
|
Rönkä K, De Pasqual C, Mappes J, Gordon S, Rojas B. Colour alone matters: no predator generalization among morphs of an aposematic moth. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2017.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Thorogood R, Kokko H, Mappes J. Social transmission of avoidance among predators facilitates the spread of novel prey. Nat Ecol Evol 2017; 2:254-261. [DOI: 10.1038/s41559-017-0418-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022]
|
16
|
Franks DW, Oxford GS. The co-evolution of anti-predator polymorphisms in sympatric populations. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
17
|
Holmes IA, Grundler MR, Davis Rabosky AR. Predator Perspective Drives Geographic Variation in Frequency-Dependent Polymorphism. Am Nat 2017; 190:E78-E93. [PMID: 28937812 DOI: 10.1086/693159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Color polymorphism in natural populations can manifest as a striking patchwork of phenotypes in space, with neighboring populations characterized by dramatic differences in morph composition. These geographic mosaics can be challenging to explain in the absence of localized selection because they are unlikely to result from simple isolation-by-distance or clinal variation in selective regimes. To identify processes that can lead to the formation of geographic mosaics, we developed a simulation-based model to explore the influence of predator perspective, selection, migration, and genetic linkage of color loci on allele frequencies in polymorphic populations over space and time. Using simulated populations inspired by the biology of Heliconius longwing butterflies, Cepaea land snails, Oophaga poison frogs, and Sonora ground snakes, we found that the relative sizes of predator and prey home ranges can produce large differences in morph composition between neighboring populations under both positive and negative frequency-dependent selection. We also demonstrated the importance of the interaction of predator perspective with the type of frequency dependence and localized directional selection across migration and selection intensities. Our results show that regional-scale predation can promote the formation of phenotypic mosaics in prey species, without the need to invoke spatial variation in selective regimes. We suggest that predator behavior can play an important and underappreciated role in the formation and maintenance of geographic mosaics in polymorphic species.
Collapse
|
18
|
Landová E, Hotová Svádová K, Fuchs R, Štys P, Exnerová A. The effect of social learning on avoidance of aposematic prey in juvenile great tits (Parus major). Anim Cogn 2017. [PMID: 28639012 DOI: 10.1007/s10071-017-1106-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Social learning plays an important role in acquiring new foraging skills and food preferences in many bird species but its potential role in learning to avoid aposematic prey has never been studied. We tested the effect of social learning on the acquisition of avoidance of aposematic insect prey (firebug Pyrrhocoris apterus; Heteroptera) in juvenile, hand-reared great tits (Parus major). Behaviour towards aposematic prey was compared between two groups of birds: (1) the observers that were, prior to encounter with firebugs, allowed to watch the experienced conspecific demonstrator repeatedly refuse to attack the prey, and (2) the control birds that lacked this opportunity. Observing an experienced demonstrator was not sufficient for learning complete avoidance, because birds from both groups attacked at least the first firebug they had encountered in avoidance training. However, the opportunity to observe the avoidance behaviour of another bird significantly increased the rate of subsequent individual learning of observers in comparison with control birds. Social learning also decreased mortality of firebugs killed by the birds during the avoidance learning. Socially enhanced learning to avoid aposematic prey might be a mechanism important especially for naive juvenile birds learning from their parents, but it could also enhance learning in adults from their more experienced flock mates. Because social learning of avoidance may also lead to decreased mortality of aposematic prey, its effect should be taken into account in scenarios considering evolution and maintenance of prey warning signals.
Collapse
Affiliation(s)
- Eva Landová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Kateřina Hotová Svádová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Roman Fuchs
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Pavel Štys
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Alice Exnerová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic.
| |
Collapse
|
19
|
Miura K. Patterns in the autotomized adults of two sympatric, closely related grasshopper species in their natural habitat. Ecol Res 2017. [DOI: 10.1007/s11284-017-1445-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Experimental evidence suggests that specular reflectance and glossy appearance help amplify warning signals. Sci Rep 2017; 7:257. [PMID: 28325898 PMCID: PMC5427979 DOI: 10.1038/s41598-017-00217-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/14/2017] [Indexed: 11/08/2022] Open
Abstract
Specular reflection appears as a bright spot or highlight on any smooth glossy convex surface and is caused by a near mirror-like reflectance off the surface. Convex shapes always provide the ideal geometry for highlights, areas of very strong reflectance, regardless of the orientation of the surface or position of the receiver. Despite highlights and glossy appearance being common in chemically defended insects, their potential signalling function is unknown. We tested the role of highlights in warning colouration of a chemically defended, alpine leaf beetle, Oreina cacaliae. We reduced the beetles' glossiness, hence their highlights, by applying a clear matt finish varnish on their elytra. We used blue tits as predators to examine whether the manipulation affected their initial latency to attack, avoidance learning and generalization of warning colouration. The birds learned to avoid both dull and glossy beetles but they initially avoided glossy prey more than dull prey. Interestingly, avoidance learning was generalized asymmetrically: birds that initially learned to avoid dull beetles avoided glossy beetles equally strongly, but not vice versa. We conclude that specular reflectance and glossiness can amplify the warning signal of O. cacaliae, augmenting avoidance learning, even if it is not critical for it.
Collapse
|
21
|
Rowland HM, Fulford AJ, Ruxton GD. Predator learning differences affect the survival of chemically defended prey. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2016.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Adamová-Ježová D, Hospodková E, Fuchsová L, Štys P, Exnerová A. Through experience to boldness? Deactivation of neophobia towards novel and aposematic prey in three European species of tits (Paridae). Behav Processes 2016; 131:24-31. [DOI: 10.1016/j.beproc.2016.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 11/25/2022]
|
23
|
Greggor AL, McIvor GE, Clayton NS, Thornton A. Contagious risk taking: social information and context influence wild jackdaws' responses to novelty and risk. Sci Rep 2016; 6:27764. [PMID: 27282438 PMCID: PMC4901300 DOI: 10.1038/srep27764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/24/2016] [Indexed: 11/10/2022] Open
Abstract
Although wild animals increasingly encounter human-produced food and objects, it is unknown how they learn to discriminate beneficial from dangerous novelty. Since social learning allows animals to capitalize on the risk-taking of others, and avoid endangering themselves, social learning should be used around novel and unpredictable stimuli. However, it is unclear whether animals use social cues equally around all types of novelty and at all times of year. We assessed whether wild, individually marked jackdaws-a highly neophobic, yet adaptable species-are equally influenced by social cues to consume novel, palatable foods and to approach a startling object. We conducted these tests across two seasons, and found that in both seasons observers were more likely to consume novel foods after seeing a demonstrator do so. In contrast, observers only followed the demonstrator in foraging next to the object during breeding season. Throughout the year more birds were wary of consuming novel foods than wary of approaching the object, potentially leading to jackdaws' greater reliance on social information about food. Jackdaws' dynamic social cue usage demonstrates the importance of context in predicting how social information is used around novelty, and potentially indicates the conditions that facilitate animals' adjustment to anthropogenic disturbance.
Collapse
Affiliation(s)
- Alison L. Greggor
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Guillam E. McIvor
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, TR10 9FE, UK
| | - Nicola S. Clayton
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, TR10 9FE, UK
| |
Collapse
|
24
|
Karlíková Z, Veselý P, Beránková J, Fuchs R. Low Ability of Great Tits to Discriminate Similarly Inconspicuous Edible and Inedible Prey. Ethology 2016. [DOI: 10.1111/eth.12454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zuzana Karlíková
- Faculty of Science; University of South Bohemia; České Budějovice Czech Republic
| | - Petr Veselý
- Faculty of Science; University of South Bohemia; České Budějovice Czech Republic
| | - Jana Beránková
- Faculty of Science; University of South Bohemia; České Budějovice Czech Republic
| | - Roman Fuchs
- Faculty of Science; University of South Bohemia; České Budějovice Czech Republic
| |
Collapse
|
25
|
Honma A, Mappes J, Valkonen JK. Warning coloration can be disruptive: aposematic marginal wing patterning in the wood tiger moth. Ecol Evol 2015; 5:4863-74. [PMID: 26640666 PMCID: PMC4662304 DOI: 10.1002/ece3.1736] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 11/10/2022] Open
Abstract
Warning (aposematic) and cryptic colorations appear to be mutually incompatible because the primary function of the former is to increase detectability, whereas the function of the latter is to decrease it. Disruptive coloration is a type of crypsis in which the color pattern breaks up the outline of the prey, thus hindering its detection. This delusion can work even when the prey's pattern elements are highly contrasting; thus, it is possible for an animal's coloration to combine both warning and disruptive functions. The coloration of the wood tiger moth (Parasemia plantaginis) is such that the moth is conspicuous when it rests on vegetation, but when it feigns death and drops to the grass- and litter-covered ground, it is hard to detect. This death-feigning behavior therefore immediately switches the function of its coloration from signaling to camouflage. We experimentally tested whether the forewing patterning of wood tiger moths could function as disruptive coloration against certain backgrounds. Using actual forewing patterns of wood tiger moths, we crafted artificial paper moths and placed them on a background image resembling a natural litter and grass background. We manipulated the disruptiveness of the wing pattern so that all (marginal pattern) or none (nonmarginal pattern) of the markings extended to the edge of the wing. Paper moths, each with a hidden palatable food item, were offered to great tits (Parus major) in a large aviary where the birds could search for and attack the "moths" according to their detectability. The results showed that prey items with the disruptive marginal pattern were attacked less often than prey without it. However, the disruptive function was apparent only when the prey was brighter than the background. These results suggest that warning coloration and disruptive coloration can work in concert and that the moth, by feigning death, can switch the function of its coloration from warning to disruptive.
Collapse
Affiliation(s)
- Atsushi Honma
- University of Jyväskylä Department of Biological and Environmental Science Centre of Excellence in Biological Interactions P.O. Box 35 Jyväskylä 40014 Finland ; Department of Ecosystem Studies School of Environmental Science The University of Shiga Prefecture 2500 Hassaka-cho Hikone City Shiga 522-8533 Japan
| | - Johanna Mappes
- University of Jyväskylä Department of Biological and Environmental Science Centre of Excellence in Biological Interactions P.O. Box 35 Jyväskylä 40014 Finland
| | - Janne K Valkonen
- University of Jyväskylä Department of Biological and Environmental Science Centre of Excellence in Biological Interactions P.O. Box 35 Jyväskylä 40014 Finland
| |
Collapse
|
26
|
Exnerová A, Ježová D, Štys P, Doktorovová L, Rojas B, Mappes J. Different reactions to aposematic prey in 2 geographically distant populations of great tits. Behav Ecol 2015. [DOI: 10.1093/beheco/arv086] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
27
|
Pintor LM, Byers JE. Individual variation in predator behavior and demographics affects consumption of non-native prey. Behav Ecol 2015. [DOI: 10.1093/beheco/arv013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Mappes J, Kokko H, Ojala K, Lindström L. Seasonal changes in predator community switch the direction of selection for prey defences. Nat Commun 2014; 5:5016. [PMID: 25247589 PMCID: PMC4199109 DOI: 10.1038/ncomms6016] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/18/2014] [Indexed: 11/23/2022] Open
Abstract
Insect communities consist of aposematic species with efficient warning colours against predation, as well as abundant examples of crypsis. To understand such coexistence, we here report results from a field experiment where relative survival of artificial larvae, varying in conspicuousness, was estimated in natural bird communities over an entire season. This takes advantage of natural variation in the proportion of naive predators: naivety peaks when young birds have just fledged. We show that the relative benefit of warning signals and crypsis changes accordingly. When naive birds are rare (early and late in the season), conspicuous warning signals improve survival, but conspicuousness becomes a disadvantage near the fledging time of birds. Such temporal structuring of predator-prey relationships facilitates the coexistence of diverse antipredatory strategies and helps explain two patterns we found in a 688-species community of Lepidoterans: larval warning signals remain rare and occur disproportionately often in seasons when predators are educated.
Collapse
Affiliation(s)
- Johanna Mappes
- Centre of Excellence in Biological Interactions Research, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box, 35, Jyväskylä FI- 40014, Finland
| | - Hanna Kokko
- Centre of Excellence in Biological Interactions Research, Department of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Australian Capital Territory 0200, Canberra, Australia
| | - Katja Ojala
- Centre of Excellence in Biological Interactions Research, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box, 35, Jyväskylä FI- 40014, Finland
| | - Leena Lindström
- Centre of Excellence in Biological Interactions Research, Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box, 35, Jyväskylä FI- 40014, Finland
| |
Collapse
|
29
|
|
30
|
Carroll J, Sherratt TN. A direct comparison of the effectiveness of two anti-predator strategies under field conditions. J Zool (1987) 2013. [DOI: 10.1111/jzo.12074] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- J. Carroll
- Department of Biology; Carleton University; Ottawa ON Canada
| | - T. N. Sherratt
- Department of Biology; Carleton University; Ottawa ON Canada
| |
Collapse
|
31
|
Abstract
Frequency-dependent selection (FDS) remains a common heuristic explanation for the maintenance of genetic variation in natural populations. The pairwise-interaction model (PIM) is a well-studied general model of frequency-dependent selection, which assumes that a genotype's fitness is a function of within-population intergenotypic interactions. Previous theoretical work indicated that this type of model is able to sustain large numbers of alleles at a single locus when it incorporates recurrent mutation. These studies, however, have ignored the impact of the distribution of fitness effects of new mutations on the dynamics and end results of polymorphism construction. We suggest that a natural way to model mutation would be to assume mutant fitness is related to the fitness of the parental allele, i.e., the existing allele from which the mutant arose. Here we examine the numbers and distributions of fitnesses and alleles produced by construction under the PIM with mutation from parental alleles and the impacts on such measures due to different methods of generating mutant fitnesses. We find that, in comparison with previous results, generating mutants from existing alleles lowers the average number of alleles likely to be observed in a system subject to FDS, but produces polymorphisms that are highly stable and have realistic allele-frequency distributions.
Collapse
|
32
|
Nokelainen O, Lindstedt C, Mappes J. Environment-mediated morph-linked immune and life-history responses in the aposematic wood tiger moth. J Anim Ecol 2013; 82:653-62. [PMID: 23356667 DOI: 10.1111/1365-2656.12037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 11/20/2012] [Indexed: 12/01/2022]
Abstract
1. Warning signals are expected to evolve towards conspicuousness and monomorphism, and thereby hamper the evolution of multiple colour morphs. Here, we test fitness responses to different rearing densities to explain colour polymorphism in aposematic wood tiger moth (Parasemia plantaginis) males. 2. We used larval lines sired by white or yellow adult males selected for small or large melanization patterns of coloration. We reared these selected lines either solitarily (favourable conditions) or in aggregations (challenged conditions), and followed their performance to adult stage. We tested whether differences in larval density affected life-history traits, adult melanin expression, adult morph (white or yellow) survival and immunological responses. 3. We found that the aggregated environment increased mortality of larvae, but decreased larval developmental time and pupa weight. Adult wing melanin pigmentation was dependent on larval melanin expression but not rearing density. We also confirmed that adult wing coloration had a genetic basis (h(2) = 0.42) and was not influenced by larval growth density. Adult yellow males survived better from aggregations in comparison with white males, which may be related to differences in immune defence. White males had better encapsulation ability, whereas yellow males had increased lytic activity of haemolymph in the aggregations. 4. Our main results highlight, that morph-linked immune responses mediated by differential growth density may facilitate the maintenance of colour polymorphism in aposematic species. In nature, risk of diseases and parasites vary spatially and temporally. Therefore, both yellow and white adult morphs can be maintained due to their differential investment in immune defence in heterogeneous environments.
Collapse
Affiliation(s)
- Ossi Nokelainen
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, P.O. Box 35, 40014, Finland
| | | | | |
Collapse
|
33
|
Zylinski S, Osorio D. Visual contrast and color in rapid learning of novel patterns by chicks. J Exp Biol 2013; 216:4184-9. [DOI: 10.1242/jeb.085001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Biological communication signals often combine bright and dark colors, such as yellow and black, but it is unclear why such patterns are effective. The literature on aposematism suggests that high contrast patterns may be easily learnt or innately avoided, whereas studies of sexual signaling refer to their attractiveness or to their cost. Here in experiments with poultry chicks trained to find food in patterned containers, we confirm that elevated contrast dramatically increases the rate of initial attack on novel stimuli, but this response is labile. The chicks peck once at a novel unrewarded stimulus and then ignore it for at least 24 hours. Such single trial learning has not previously been reported for birds without a positively aversive unconditioned stimulus. We then test and reject two hypotheses about the function of high contrast patterns: first that the preferential responses are due to novelty, and second that elevated contrast enhances learning about a novel color. More generally, the observations are consistent with the idea that elevated contrast attracts attention, thereby enhancing both initial responses - whether positive or negative - and the rate of learning.
Collapse
|