1
|
Rubio AO, Stuckert AMM, Geralds B, Nielsen R, MacManes MD, Summers K. What Makes a Mimic? Orange, Red, and Black Color Production in the Mimic Poison Frog (Ranitomeya imitator). Genome Biol Evol 2024; 16:evae123. [PMID: 38874406 PMCID: PMC11255871 DOI: 10.1093/gbe/evae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Aposematic organisms rely on their conspicuous appearance to signal that they are defended and unpalatable. Such phenotypes are strongly tied to survival and reproduction. Aposematic colors and patterns are highly variable; however, the genetic, biochemical, and physiological mechanisms producing this conspicuous coloration remain largely unidentified. Here, we identify genes potentially affecting color variation in two color morphs of Ranitomeya imitator: the orange-banded Sauce and the redheaded Varadero morphs. We examine gene expression in black and orange skin patches from the Sauce morph and black and red skin patches from the Varadero morph. We identified genes differentially expressed between skin patches, including those that are involved in melanin synthesis (e.g. mlana, pmel, tyrp1), iridophore development (e.g. paics, ppat, ak1), pteridine synthesis (e.g. gch1, pax3-a, xdh), and carotenoid metabolism (e.g. dgat2, rbp1, scarb2). In addition, using weighted correlation network analysis, we identified the top 50 genes with high connectivity from the most significant network associated with gene expression differences between color morphs. Of these 50 genes, 13 were known to be related to color production (gch1, gmps, gpr143, impdh1, mc1r, pax3-a, pax7, ppat, rab27a, rlbp1, tfec, trpm1, xdh).
Collapse
Affiliation(s)
- Andrew O Rubio
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Adam M M Stuckert
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - BreAnn Geralds
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Matthew D MacManes
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Kyle Summers
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
2
|
Wan YC, Navarrete Méndez MJ, O'Connell LA, Uricchio LH, Roland AB, Maan ME, Ron SR, Betancourth-Cundar M, Pie MR, Howell KA, Richards-Zawacki CL, Cummings ME, Cannatella DC, Santos JC, Tarvin RD. Selection on Visual Opsin Genes in Diurnal Neotropical Frogs and Loss of the SWS2 Opsin in Poison Frogs. Mol Biol Evol 2023; 40:msad206. [PMID: 37791477 PMCID: PMC10548314 DOI: 10.1093/molbev/msad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.
Collapse
Affiliation(s)
- Yin Chen Wan
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - María José Navarrete Méndez
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Museo de Zoología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Lawrence H Uricchio
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Biology, Tufts University, Medford, MA, USA
| | - Alexandre-Benoit Roland
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI), UMR5169 CNRS, Toulouse University, Toulouse, France
| | - Martine E Maan
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Santiago R Ron
- Museo de Zoología, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | | | - Marcio R Pie
- Department of Zoology, Universidade Federal do Paraná, Curitiba, Brazil
- Biology Department, Edge Hill University, Ormskirk, United Kingdom
| | - Kimberly A Howell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Molly E Cummings
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - David C Cannatella
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Biodiversity Center, University of Texas at Austin, Austin, TX, USA
| | - Juan C Santos
- Department of Biological Sciences, St. John's University, New York City, NY, USA
| | - Rebecca D Tarvin
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
3
|
Yeager J, Penacchio O. Outcomes of multifarious selection on the evolution of visual signals. Proc Biol Sci 2023; 290:20230327. [PMID: 37040810 PMCID: PMC10089717 DOI: 10.1098/rspb.2023.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Multifarious sources of selection shape visual signals and can produce phenotypic divergence. Theory predicts that variance in warning signals should be minimal due to purifying selection, yet polymorphism is abundant. While in some instances divergent signals can evolve into discrete morphs, continuously variable phenotypes are also encountered in natural populations. Notwithstanding, we currently have an incomplete understanding of how combinations of selection shape fitness landscapes, particularly those which produce polymorphism. We modelled how combinations of natural and sexual selection act on aposematic traits within a single population to gain insights into what combinations of selection favours the evolution and maintenance of phenotypic variation. With a rich foundation of studies on selection and phenotypic divergence, we reference the poison frog genus Oophaga to model signal evolution. Multifarious selection on aposematic traits created the topology of our model's fitness landscape by approximating different scenarios found in natural populations. Combined, the model produced all types of phenotypic variation found in frog populations, namely monomorphism, continuous variation and discrete polymorphism. Our results afford advances into how multifarious selection shapes phenotypic divergence, which, along with additional modelling enhancements, will allow us to further our understanding of visual signal evolution.
Collapse
Affiliation(s)
- Justin Yeager
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencas Aplicadas, Universidad de Las Américas, Ecuador
| | - Olivier Penacchio
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife KY16 9JP, UK
- Computer Vision Center, Computer Science Department, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
4
|
Betancourth-Cundar M, Palacios-Rodriguez P. Reproductive behaviors promote ecological and phenotypic sexual differentiation in the critically endangered Lehmann’s poison frog. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractTerritoriality and parental care are complex reproductive behaviors found in many taxa from insects to mammals. Parental care can be carried out by the female, the male, or both, depending on the species. Territoriality, in contrast, is predominantly displayed by males. Different selective pressures imposed on individuals from the sex performing territorial or parental care behaviors may also lead to sexual differentiation in other life-history traits. Due to their territorial behavior and their diversity of parental care behaviors, Neotropical poison frogs are an excellent study system to investigate whether behavioral traits can influence sexual differentiation in intrinsic or extrinsic traits of individuals. Here, we evaluate whether territorial and parental care behaviors mediate sexual differentiation in ecological (habitat use) and phenotypic (coloration, morphology) traits in the critically endangered Lehmann’s poison frog (Oophaga lehmanni), a species in which males defend territories while females provide parental care. We found sex differences in habitat use and morphological traits, but not in coloration. Males use trunks and green leaves as perches more frequently and are found on higher substrates, than females. We found no sex differences in body size, but females have longer arms than males, which is probably associated with their parental duties (climbing trees to feed the tadpoles). Altogether, our results provide evidence that selection pressures act differently on male and female traits, and that territoriality and parental care may promote the evolution of sexual differentiation in dendrobatids. Long-term wildlife observations are essential to identify important life-history traits and to evaluate hypotheses about the behavioral ecology and conservation of this and other vertebrate species.
Collapse
|
5
|
Liao WB, Jiang Y, Li DY, Jin L, Zhong MJ, Qi Y, Lüpold S, Kotrschal A. Cognition contra camouflage: How the brain mediates predator-driven crypsis evolution. SCIENCE ADVANCES 2022; 8:eabq1878. [PMID: 35977010 PMCID: PMC9385145 DOI: 10.1126/sciadv.abq1878] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/01/2022] [Indexed: 06/01/2023]
Abstract
While crypsis is a prominent antipredator adaptation, the role of the brain in predator-driven evolution remains controversial. Resolving this controversy requires contextualizing the brain with established antipredator traits and predation pressure. We hypothesize that the reduced predation risk through crypsis relaxes predation-driven selection on the brain and provide comparative evidence across 102 Chinese frog species for our hypothesis. Specifically, our phylogenetic path analysis reveals an indirect relationship between predation risk and crypsis that is mediated by brain size. This result suggests that at a low predation risk, frogs can afford to be conspicuous and use their large brain for cognitive predator evasion. This strategy may become less efficient or energetically costlier under higher predation pressure, favoring smaller brains and instead increasing crypsis.
Collapse
Affiliation(s)
- Wen Bo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, China
| | - Ying Jiang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Da Yong Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Mao Jun Zhong
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alexander Kotrschal
- Behavioral Ecology, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
6
|
Londoño GA, Sandoval‐H J, Sallam MF, Allen JM. On the evolution of mimicry in avian nestlings. Ecol Evol 2022; 12:e8842. [PMID: 35449583 PMCID: PMC9013854 DOI: 10.1002/ece3.8842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 11/26/2022] Open
Abstract
Batesian mimicry (BM), where a nontoxic species resembles a toxic species with aposematic coloring, has been recently described for a Neotropical species of the suboscine passerine (Laniocera hypopyrra). Understanding the order and series in which these characteristics evolved is unknown and requires character information from closely related taxa. Here, we trace the origin of mimetic traits and how they evolved by examining antipredator characteristics using images and other field‐collected trait data from nest and nestlings along with data available in the literature for the Laniisominae clade and closely related taxa. We found that morphological modifications of the downy feathers appeared first in the broader clade leading to the Laniisominae clade followed by further morphological and behavioral characteristics within the Laniisominae clade leading to the full BM. Images of nestlings in the Laniisominae and closely related clades demonstrated the extent of antipredator and camouflage characteristics. We found a complex set of behavioral and morphological traits in this clade for reducing predation from hiding to camouflage to mimicry. We further propose the evolution of two distinctive mimicry strategies in the Laniisominae clade: (1) Batesian Mimicry, as described above and (2) Masquerade, resemblance to inedible objects commonly found in their local environment. This complex set of antipredator traits shed light on the diversity of antipredator characteristics in avian nestlings, particularly in neotropical areas where the avian diversity is highest. Unfortunately, there are hundreds of species in the neotropics that lack basic natural history information on nesting traits, and therefore, we are likely missing critical information on the diversity of antipredator characteristics across avian nestlings.
Collapse
Affiliation(s)
- Gustavo A. Londoño
- Facultad de Ciencias NaturalesDepartamento de Ciencias BiológicasUniversidad IcesiCaliColombia
| | - Juliana Sandoval‐H
- A.C. Red de Biodiversidad y SistemáticaInstituto de EcologíaXalapaMexico
| | | | - Julie M. Allen
- Biology DepartmentUniversity of Nevada‐RenoRenoNevadaUSA
| |
Collapse
|
7
|
Yeager J, Barnett JB. Continuous Variation in an Aposematic Pattern Affects Background Contrast, but Is Not Associated With Differences in Microhabitat Use. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.803996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Variation in aposematic signals was once predicted to be rare, yet in recent years it has become increasingly well documented. Despite increases in the frequency with which polytypism and polymorphism have been suggested to occur, population-wide variance is rarely quantified. We comprehensively sampled a subpopulation of the poison frog Oophaga sylvatica, a species which is polytypic across its distribution and also shows considerable within-population polymorphism. On one hand, color pattern polymorphism could be the result of multifarious selection acting to balance different signaling functions and leading to the evolution of discrete sub-morphs which occupy different fitness peaks. Alternatively, variance could simply be due to relaxed selection, where variation would be predicted to be continuous. We used visual modeling of conspecific and heterospecific observers to quantify the extent of within population phenotypic variation and assess whether this variation produced distinct signals. We found that, despite considerable color pattern variation, variance could not be partitioned into distinct groups, but rather all viewers would be likely to perceive variation as continuous. Similarly, we found no evidence that frog color pattern contrast was either enhanced or diminished in the frogs’ chosen microhabitats compared to alternative patches in which conspecifics were observed. Within population phenotypic variance therefore does not seem to be indicative of strong selection toward multiple signaling strategies, but rather pattern divergence has likely arisen due to weak purifying selection, or neutral processes, on a signal that is highly salient to both conspecifics and predators.
Collapse
|
8
|
Clark MI, Bradburd GS, Akopyan M, Vega A, Rosenblum EB, Robertson JM. Genetic isolation by distance underlies colour pattern divergence in red-eyed treefrogs (Agalychnis callidryas). Mol Ecol 2022; 31:1666-1681. [PMID: 35034406 PMCID: PMC8923152 DOI: 10.1111/mec.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/21/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
Investigating the spatial distribution of genetic and phenotypic variation can provide insights into the evolutionary processes that shape diversity in natural systems. We characterized patterns of genetic and phenotypic diversity to learn about drivers of colour-pattern diversification in red-eyed treefrogs (Agalychnis callidryas) in Costa Rica. Along the Pacific coast, red-eyed treefrogs have conspicuous leg colour patterning that transitions from orange in the north to purple in the south. We measured phenotypic variation of frogs, with increased sampling at sites where the orange-to-purple transition occurs. At the transition zone, we discovered the co-occurrence of multiple colour-pattern morphs. To explore possible causes of this variation, we generated a single nucleotide polymorphism data set to analyse population genetic structure, measure genetic diversity and infer the processes that mediate genotype-phenotype dynamics. We investigated how patterns of genetic relatedness correspond to individual measures of colour pattern along the coast, including testing for the role of hybridization in geographic regions where orange and purple phenotypic groups co-occur. We found no evidence that colour-pattern polymorphism in the transition zone arose through recent hybridization. Instead, a strong pattern of genetic isolation by distance indicates that colour-pattern variation was either retained through other processes such as ancestral colour polymorphisms or ancient secondary contact, or else it was generated by novel mutations. We found that phenotype changes along the Pacific coast more than would be expected based on genetic divergence and geographic distance alone. Combined, our results suggest the possibility of selective pressures acting on colour pattern at a small geographic scale.
Collapse
Affiliation(s)
- Meaghan I. Clark
- Department of Biology, California State University Northridge, Northridge, California, USA,Department of integrative Biology, Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, Michigan, USA,W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - Gideon S. Bradburd
- Department of integrative Biology, Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Maria Akopyan
- Department of Biology, California State University Northridge, Northridge, California, USA,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | | | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, USA,Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, California, USA
| | - Jeanne M. Robertson
- Department of Biology, California State University Northridge, Northridge, California, USA,Department of Herpetology, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| |
Collapse
|
9
|
Boussens‐Dumon G, Llaurens V. Sex, competition and mimicry: an eco‐evolutionary model reveals unexpected impacts of ecological interactions on the evolution of phenotypes in sympatry. OIKOS 2021. [DOI: 10.1111/oik.08139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Grégoire Boussens‐Dumon
- Inst. de Systématique, Evolution et Biodiversité (UMR 7205 CNRS/MNHN/SU/EPHE/UA), Muséum National d'Histoire Naturelle – CP50 Paris France
| | - Violaine Llaurens
- Inst. de Systématique, Evolution et Biodiversité (UMR 7205 CNRS/MNHN/SU/EPHE/UA), Muséum National d'Histoire Naturelle – CP50 Paris France
| |
Collapse
|
10
|
Posso-Terranova A, Andrés J. Skin transcriptional profiles in Oophaga poison frogs. Genet Mol Biol 2020; 43:e20190401. [PMID: 33211057 PMCID: PMC7678260 DOI: 10.1590/1678-4685-gmb-2019-0401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/06/2020] [Indexed: 12/03/2022] Open
Abstract
Aposematic organisms advertise their defensive toxins to predators using a variety of warning
signals, including bright coloration. While most Neotropical poison frogs (Dendrobatidae) rely on
crypsis to avoid predators, Oophaga poison frogs from South America advertise their
chemical defenses, a complex mix of diet-derived alkaloids, by using conspicuous hues. The present
study aimed to characterize the skin transcriptomic profiles of South American
Oophaga poison frogs. Our analyses showed very similar transcriptomic profiles for
these closely related species in terms of functional annotation and relative abundance of gene
ontology terms expressed. Analyses of expression profiles of Oophaga and available
skin transcriptomes of cryptic anurans allowed us to propose initial hypotheses for the active
sequestration of alkaloid-based chemical defenses and to highlight some genes that may be
potentially involved in resistance mechanisms to avoid self-intoxication and skin coloration. In
doing so, we provide an important molecular resource for the study of warning signals that will
facilitate the assembly and annotation of future poison frog genomes.
Collapse
Affiliation(s)
- Andrés Posso-Terranova
- University of Saskatchewan, Department of Biology, Saskatoon, SK, Canada.,Universidad Nacional de Colombia sede Palmira, Palmira, Colombia
| | - José Andrés
- University of Saskatchewan, Department of Biology, Saskatoon, SK, Canada.,Cornell University, Department of Ecology and Evolution, Ithaca, NY, USA
| |
Collapse
|
11
|
Conspecific and Predator Perception of the Red Oophaga pumilio Morph from the Central Caribbean of Costa Rica. J HERPETOL 2020. [DOI: 10.1670/19-110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Leapfrog to speciation boosted by mother’s influence. Nature 2019; 574:38-39. [DOI: 10.1038/d41586-019-02904-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Briolat ES, Burdfield‐Steel ER, Paul SC, Rönkä KH, Seymoure BM, Stankowich T, Stuckert AMM. Diversity in warning coloration: selective paradox or the norm? Biol Rev Camb Philos Soc 2019; 94:388-414. [PMID: 30152037 PMCID: PMC6446817 DOI: 10.1111/brv.12460] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
Abstract
Aposematic theory has historically predicted that predators should select for warning signals to converge on a single form, as a result of frequency-dependent learning. However, widespread variation in warning signals is observed across closely related species, populations and, most problematically for evolutionary biologists, among individuals in the same population. Recent research has yielded an increased awareness of this diversity, challenging the paradigm of signal monomorphy in aposematic animals. Here we provide a comprehensive synthesis of these disparate lines of investigation, identifying within them three broad classes of explanation for variation in aposematic warning signals: genetic mechanisms, differences among predators and predator behaviour, and alternative selection pressures upon the signal. The mechanisms producing warning coloration are also important. Detailed studies of the genetic basis of warning signals in some species, most notably Heliconius butterflies, are beginning to shed light on the genetic architecture facilitating or limiting key processes such as the evolution and maintenance of polymorphisms, hybridisation, and speciation. Work on predator behaviour is changing our perception of the predator community as a single homogenous selective agent, emphasising the dynamic nature of predator-prey interactions. Predator variability in a range of factors (e.g. perceptual abilities, tolerance to chemical defences, and individual motivation), suggests that the role of predators is more complicated than previously appreciated. With complex selection regimes at work, polytypisms and polymorphisms may even occur in Müllerian mimicry systems. Meanwhile, phenotypes are often multifunctional, and thus subject to additional biotic and abiotic selection pressures. Some of these selective pressures, primarily sexual selection and thermoregulation, have received considerable attention, while others, such as disease risk and parental effects, offer promising avenues to explore. As well as reviewing the existing evidence from both empirical studies and theoretical modelling, we highlight hypotheses that could benefit from further investigation in aposematic species. Finally by collating known instances of variation in warning signals, we provide a valuable resource for understanding the taxonomic spread of diversity in aposematic signalling and with which to direct future research. A greater appreciation of the extent of variation in aposematic species, and of the selective pressures and constraints which contribute to this once-paradoxical phenomenon, yields a new perspective for the field of aposematic signalling.
Collapse
Affiliation(s)
- Emmanuelle S. Briolat
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
| | - Emily R. Burdfield‐Steel
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
| | - Sarah C. Paul
- Centre for Ecology & Conservation, College of Life & Environmental SciencesUniversity of ExeterPenryn Campus, Penryn, Cornwall, TR10 9FEU.K.
- Department of Chemical EcologyBielefeld UniversityUniversitätsstraße 25, 33615, BielefeldGermany
| | - Katja H. Rönkä
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskylä, 40014Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinki, 00014Finland
| | - Brett M. Seymoure
- Department of BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
- Department of Fish, Wildlife, and Conservation BiologyColorado State UniversityFort CollinsCO 80525U.S.A.
| | - Theodore Stankowich
- Department of Biological SciencesCalifornia State UniversityLong BeachCA 90840U.S.A.
| | - Adam M. M. Stuckert
- Department of BiologyEast Carolina University1000 E Fifth St, GreenvilleNC 27858U.S.A.
| |
Collapse
|
14
|
Klonoski K, Bi K, Rosenblum EB. Phenotypic and genetic diversity in aposematic Malagasy poison frogs (genus Mantella). Ecol Evol 2019; 9:2725-2742. [PMID: 30891212 PMCID: PMC6406014 DOI: 10.1002/ece3.4943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/07/2018] [Accepted: 01/02/2019] [Indexed: 12/17/2022] Open
Abstract
Intraspecific color variation has long fascinated evolutionary biologists. In species with bright warning coloration, phenotypic diversity is particularly compelling because many factors, including natural and sexual selection, contribute to intraspecific variation. To better understand the causes of dramatic phenotypic variation in Malagasy poison frogs, we quantified genetic structure and color and pattern variation across three closely related species, Mantella aurantiaca, Mantella crocea, and Mantella milotympanum. Although our restriction site-associated DNA (RAD) sequencing approach identified clear genetic clusters, they do not align with current species designations, which has important conservation implications for these imperiled frogs. Moreover, our results suggest that levels of intraspecific color variation within this group have been overestimated, while species diversity has been underestimated. Within major genetic clusters, we observed distinct patterns of variation including: populations that are phenotypically similar yet genetically distinct, populations where phenotypic and genetic breaks coincide, and populations that are genetically similar but have high levels of within-population phenotypic variation. We also detected admixture between two of the major genetic clusters. Our study suggests that several mechanisms-including hybridization, selection, and drift-are contributing to phenotypic diversity. Ultimately, our work underscores the need for a reevaluation of how polymorphic and polytypic populations and species are classified, especially in aposematic organisms.
Collapse
Affiliation(s)
- Karina Klonoski
- Department of Environmental Science, Policy, and ManagementUniversity of California, BerkeleyBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
| | - Ke Bi
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
- Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3)University of California, BerkeleyBerkeleyCalifornia
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and ManagementUniversity of California, BerkeleyBerkeleyCalifornia
- Museum of Vertebrate ZoologyUniversity of California, BerkeleyBerkeleyCalifornia
| |
Collapse
|
15
|
Rojas B, Burdfield-Steel E, De Pasqual C, Gordon S, Hernández L, Mappes J, Nokelainen O, Rönkä K, Lindstedt C. Multimodal Aposematic Signals and Their Emerging Role in Mate Attraction. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
16
|
Cummings ME, Endler JA. 25 Years of sensory drive: the evidence and its watery bias. Curr Zool 2018; 64:471-484. [PMID: 30108628 PMCID: PMC6084598 DOI: 10.1093/cz/zoy043] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/18/2018] [Indexed: 12/27/2022] Open
Abstract
It has been 25 years since the formalization of the Sensory Drive hypothesis was published in the American Naturalist (1992). Since then, there has been an explosion of research identifying its utility in contributing to our understanding of inter- and intra-specific variation in sensory systems and signaling properties. The main tenet of Sensory Drive is that environmental characteristics will influence the evolutionary trajectory of both sensory (detecting capabilities) and signaling (detectable features and behaviors) traits in predictable directions. We review the accumulating evidence in 154 studies addressing these questions and categorized their approach in terms of testing for environmental influence on sensory tuning, signal characteristics, or both. For the subset of studies that examined sensory tuning, there was greater support for Sensory Drive processes shaping visual than auditory tuning, and it was more prevalent in aquatic than terrestrial habitats. Terrestrial habitats and visual traits were the prevalent habitat and sensory modality in the 104 studies showing support for environmental influence on signaling properties. An additional 19 studies that found no supporting evidence for environmental influence on signaling traits were all based in terrestrial ecosystems and almost exclusively involved auditory signals. Only 29 studies examined the complete coevolutionary process between sensory and signaling traits and were dominated by fish visual communication. We discuss biophysical factors that may contribute to the visual and aquatic bias for Sensory Drive evidence, as well as biotic factors that may contribute to the lack of Sensory Drive processes in terrestrial acoustic signaling systems.
Collapse
Affiliation(s)
- Molly E Cummings
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - John A Endler
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | | |
Collapse
|
17
|
|
18
|
An Empirical Test Indicates Only Qualitatively Honest Aposematic Signaling Within a Population of Vertebrates. J HERPETOL 2018. [DOI: 10.1670/17-047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
French CM, Ingram T, Bolnick DI. Geographical variation in colour of female threespine stickleback ( Gasterosteus aculeatus). PeerJ 2018; 6:e4807. [PMID: 29785354 PMCID: PMC5960269 DOI: 10.7717/peerj.4807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/30/2018] [Indexed: 01/24/2023] Open
Abstract
The ecological multifunctionality of colour often results in multiple selective pressures operating on a single trait. Most research on colour evolution focuses on males because they are the most conspicuous sex in most species. This bias can limit inferences about the ecological drivers of colour evolution. For example, little is known about population divergence in colour of female threespine stickleback (Gasterosteus aculeatus), which is among the most intensively-studied model vertebrates in evolution, ecology, and behaviour. In contrast, the evolution and ecology of colour in male stickleback has received considerable attention. One aspect of female colouration that is lacking previous research is non-ornamental body colour. Non-ornamental colour can play defensive and social roles, and indicate other aspects of female stickleback ecology. To remedy this knowledge gap, we measured the colour and brightness of one dorsal and one ventral lateral area on female stickleback from nine lake populations on Vancouver Island. We found that lake populations varied in overall colour brightness and dorso-ventral contrast. In addition, we found that female brightness increased with lake size, indicating potential ecological drivers of these colour differences. Our results demonstrate that there is substantial scope for future research on female colour diversification, which has been overlooked because past researchers focused on dramatic male nuptial colours.
Collapse
Affiliation(s)
- Connor M French
- Department of Zoology, Cooperative Wildlife Research Laboratory, Southern Illinois University at Carbondale, Carbondale, IL, USA.,Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Travis Ingram
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.,Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Daniel I Bolnick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
20
|
Tinghitella RM, Lackey ACR, Martin M, Dijkstra PD, Drury JP, Heathcote R, Keagy J, Scordato ESC, Tyers AM. On the role of male competition in speciation: a review and research agenda. Behav Ecol 2017. [DOI: 10.1093/beheco/arx151] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Alycia C R Lackey
- Department of Biological Sciences, Watershed Studies Institute, Murray State University, Murray, KY, USA
| | - Michael Martin
- Department of Biology, Oxford College of Emory University, Oxford, GA, USA
| | - Peter D Dijkstra
- Department of Biology, Central Michigan University, Mount Pleasant, MI, USA
| | - Jonathan P Drury
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert Heathcote
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Jason Keagy
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elizabeth S C Scordato
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Alexandra M Tyers
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor, Gwynedd,, Wales, UK
| |
Collapse
|
21
|
Dreher CE, Rodríguez A, Cummings ME, Pröhl H. Mating status correlates with dorsal brightness in some but not all poison frog populations. Ecol Evol 2017; 7:10503-10512. [PMID: 29299233 PMCID: PMC5743646 DOI: 10.1002/ece3.3531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 02/04/2023] Open
Abstract
Sexual signals are important for intraspecific communication and mate selection, but their evolution may be driven by both natural and sexual selection, and stochastic processes. Strawberry poison frogs (Oophaga pumilio) show strong color divergence among populations, but coloration also varies among individuals of the same population. The importance of coloration for female mate choice has been studied intensely, and sexual selection seems to affect color divergence in strawberry poison frogs. However, the effect of coloration on mating success under field conditions has received very little attention. Furthermore, few studies examined how phenotypic variation among individuals of the same color morph affects mate selection under natural conditions. We measured the spectral reflectance of courting and noncourting individuals and their background substrates in three geographically separated populations. In one population (Sarapiquí, Costa Rica), we found that naturally occurring courting pairs of males and females had significantly brighter dorsal coloration than individual males and females not engaged in courtship interactions. Our field observations suggest that, in the wild, females prefer brighter males while the reason for the higher courtship activity of brighter females remains unclear. Overall our results imply that brightness differences among individuals of the same color morph may actually affect reproductive success in some populations of strawberry poison frogs.
Collapse
Affiliation(s)
- Corinna E Dreher
- Institute of Zoology University of Veterinary Medicine Hannover, Foundation Hannover Germany
| | - Ariel Rodríguez
- Institute of Zoology University of Veterinary Medicine Hannover, Foundation Hannover Germany
| | - Molly E Cummings
- Section of Integrative Biology University of Texas Austin TX USA
| | - Heike Pröhl
- Institute of Zoology University of Veterinary Medicine Hannover, Foundation Hannover Germany
| |
Collapse
|
22
|
Weldon PJ. Poison frogs, defensive alkaloids, and sleepless mice: critique of a toxicity bioassay. CHEMOECOLOGY 2017. [DOI: 10.1007/s00049-017-0238-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
23
|
Amézquita A, Ramos Ó, González MC, Rodríguez C, Medina I, Simões PI, Lima AP. Conspicuousness, color resemblance, and toxicity in geographically diverging mimicry: The pan-Amazonian frogAllobates femoralis. Evolution 2017; 71:1039-1050. [DOI: 10.1111/evo.13170] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 11/11/2016] [Accepted: 11/21/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Adolfo Amézquita
- Department of Biological Sciences; Universidad de los Andes; Cra 1 #18A-10 Bogotá 111711 Colombia
| | - Óscar Ramos
- Department of Biological Sciences; Universidad de los Andes; Cra 1 #18A-10 Bogotá 111711 Colombia
| | - Mabel Cristina González
- Department of Biological Sciences; Universidad de los Andes; Cra 1 #18A-10 Bogotá 111711 Colombia
| | - Camilo Rodríguez
- Department of Biological Sciences; Universidad de los Andes; Cra 1 #18A-10 Bogotá 111711 Colombia
| | - Iliana Medina
- Department of Biological Sciences; Universidad de los Andes; Cra 1 #18A-10 Bogotá 111711 Colombia
| | - Pedro Ivo Simões
- Laboratório de Sistemática de Vertebrados; Pontifícia Universidade Católica do Rio Grande do Sul; Av. Ipiranga 6681, Prédio 40, sala 110 Porto Alegre CEP 90619-900 Brasil
- Coordenação de Pesquisas en Biodiversidade; Instituto Nacional de Pesquisas da Amazônia (INPA); Av. André Araujo 2936 Manaus CEP 69011-970 Brasil
| | - Albertina Pimentel Lima
- Coordenação de Pesquisas en Biodiversidade; Instituto Nacional de Pesquisas da Amazônia (INPA); Av. André Araujo 2936 Manaus CEP 69011-970 Brasil
| |
Collapse
|
24
|
Grunst AS, Grunst ML, Rathbun NA, Hubbard JK, Safran RJ, Gonser RA, Tuttle EM. Disruptive selection on plumage coloration across genetically determined morphs. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2016.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Tarvin RD, Powell EA, Santos JC, Ron SR, Cannatella DC. The birth of aposematism: High phenotypic divergence and low genetic diversity in a young clade of poison frogs. Mol Phylogenet Evol 2017; 109:283-295. [PMID: 28089841 DOI: 10.1016/j.ympev.2016.12.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/30/2016] [Accepted: 12/28/2016] [Indexed: 01/01/2023]
Abstract
Rapid radiation coupled with low genetic divergence often hinders species delimitation and phylogeny estimation even if putative species are phenotypically distinct. Some aposematic species, such as poison frogs (Dendrobatidae), have high levels of intraspecific color polymorphism, which can lead to overestimation of species when phenotypic divergence primarily guides species delimitation. We explored this possibility in the youngest origin of aposematism (3-7 MYA) in poison frogs, Epipedobates, by comparing genetic divergence with color and acoustic divergence. We found low genetic divergence (2.6% in the 16S gene) despite substantial differences in color and acoustic signals. While chemical defense is inferred to have evolved in the ancestor of Epipedobates, aposematic coloration evolved at least twice or was lost once in Epipedobates, suggesting that it is evolutionarily labile. We inferred at least one event of introgression between two cryptically colored species with adjacent ranges (E. boulengeri and E. machalilla). We also find evidence for peripheral isolation resulting in phenotypic divergence and potential speciation of the aposematic E. tricolor from the non-aposematic E. machalilla. However, we were unable to estimate a well-supported species tree or delimit species using multispecies coalescent models. We attribute this failure to factors associated with recent speciation including mitochondrial introgression, incomplete lineage sorting, and too few informative molecular characters. We suggest that species delimitation within young aposematic lineages such as Epipedobates will require genome-level molecular studies. We caution against relying solely on DNA barcoding for species delimitation or identification and highlight the value of phenotypic divergence and natural history in delimiting species.
Collapse
Affiliation(s)
- Rebecca D Tarvin
- Department of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX, United States.
| | - Emily A Powell
- Department of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX, United States; Department of Biology, University of Miami, Miami, FL, United States
| | - Juan C Santos
- Department of Biology, Brigham Young University, Provo, UT, United States; Department of Biological Sciences, St. John's University, Queens, NY, United States
| | - Santiago R Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - David C Cannatella
- Department of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX, United States
| |
Collapse
|
26
|
Gade MR, Hill M, Saporito RA. Color Assortative Mating in a Mainland Population of the Poison Frog Oophaga pumilio. Ethology 2016. [DOI: 10.1111/eth.12533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Meaghan R. Gade
- Department of Biology; John Carroll University; University Heights OH USA
| | - Michelle Hill
- School of Construction and the Environment; British Columbia Institute of Technology; Burnaby British Columbia Canada
| | - Ralph A. Saporito
- Department of Biology; John Carroll University; University Heights OH USA
| |
Collapse
|
27
|
Warning signal properties covary with toxicity but not testosterone or aggregate carotenoids in a poison frog. Evol Ecol 2016. [DOI: 10.1007/s10682-016-9830-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Rojas B. Behavioural, ecological, and evolutionary aspects of diversity in frog colour patterns. Biol Rev Camb Philos Soc 2016; 92:1059-1080. [DOI: 10.1111/brv.12269] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Bibiana Rojas
- Centre of Excellence in Biological Interactions, Department of Biology and Environmental Sciences; University of Jyvaskyla; PO Box 35 Jyväskylä FI 40001 Finland
| |
Collapse
|
29
|
Ciccotto PJ, Mendelson TC. Phylogenetic Correlation Between Male Nuptial Color and Behavioral Responses to Color Across a Diverse and Colorful Genus of Freshwater Fish (
Etheostoma
spp., Teleostei: Percidae). Ethology 2016. [DOI: 10.1111/eth.12465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Tamra C. Mendelson
- Department of Biological Sciences University of Maryland Baltimore MD USA
| |
Collapse
|
30
|
Abstract
The "escape-and-radiate" hypothesis predicts that antipredator defenses facilitate adaptive radiations by enabling escape from constraints of predation, diversified habitat use, and subsequently speciation. Animals have evolved diverse strategies to reduce the direct costs of predation, including cryptic coloration and behavior, chemical defenses, mimicry, and advertisement of unprofitability (conspicuous warning coloration). Whereas the survival consequences of these alternative defenses for individuals are well-studied, little attention has been given to the macroevolutionary consequences of alternative forms of defense. Here we show, using amphibians as the first, to our knowledge, large-scale empirical test in animals, that there are important macroevolutionary consequences of alternative defenses. However, the escape-and-radiate hypothesis does not adequately describe them, due to its exclusive focus on speciation. We examined how rates of speciation and extinction vary across defensive traits throughout amphibians. Lineages that use chemical defenses show higher rates of speciation as predicted by escape-and-radiate but also show higher rates of extinction compared with those without chemical defense. The effect of chemical defense is a net reduction in diversification compared with lineages without chemical defense. In contrast, acquisition of conspicuous coloration (often used as warning signals or in mimicry) is associated with heightened speciation rates but unchanged extinction rates. We conclude that predictions based on the escape-and-radiate hypothesis must incorporate the effect of traits on both speciation and extinction, which is rarely considered in such studies. Our results also suggest that knowledge of defensive traits could have a bearing on the predictability of extinction, perhaps especially important in globally threatened taxa such as amphibians.
Collapse
|
31
|
Gordon SP, Kokko H, Rojas B, Nokelainen O, Mappes J. Colour polymorphism torn apart by opposing positive frequency-dependent selection, yet maintained in space. J Anim Ecol 2015; 84:1555-64. [DOI: 10.1111/1365-2656.12416] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/22/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Swanne P. Gordon
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Sciences; University of Jyväskylä; yväskylä Finland
| | - Hanna Kokko
- Institute of Evolutionary Biology and Environmental Studies; University of Zurich; Zurich Switzerland
| | - Bibiana Rojas
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Sciences; University of Jyväskylä; yväskylä Finland
| | - Ossi Nokelainen
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Sciences; University of Jyväskylä; yväskylä Finland
- Department of Zoology; University of Cambridge; Cambridge UK
| | - Johanna Mappes
- Centre of Excellence in Biological Interactions; Department of Biological and Environmental Sciences; University of Jyväskylä; yväskylä Finland
| |
Collapse
|
32
|
Summers K, Speed MP, Blount JD, Stuckert AMM. Are aposematic signals honest? A review. J Evol Biol 2015; 28:1583-99. [DOI: 10.1111/jeb.12676] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 01/22/2023]
Affiliation(s)
- K. Summers
- Department of Biology; East Carolina University; Greenville NC USA
| | - M. P. Speed
- Department of Evolution, Ecology, and Behaviour; University of Liverpool; Liverpool UK
| | - J. D. Blount
- Centre for Ecology and Conservation, Biosciences; University of Exeter; Penryn UK
| | | |
Collapse
|
33
|
Dreher CE, Cummings ME, Pröhl H. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species. PLoS One 2015; 10:e0130571. [PMID: 26110826 PMCID: PMC4481408 DOI: 10.1371/journal.pone.0130571] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/22/2015] [Indexed: 11/19/2022] Open
Abstract
Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake) and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast) of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and other ecological factors.
Collapse
Affiliation(s)
- Corinna E Dreher
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany.
| | - Molly E Cummings
- Department of Integrative Biology, University of Texas, Austin, TX, United States of America
| | - Heike Pröhl
- Institute of Zoology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
34
|
Crothers LR, Cummings ME. A multifunctional warning signal behaves as an agonistic status signal in a poison frog. Behav Ecol 2015. [DOI: 10.1093/beheco/aru231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Rojas DP, Stow A, Amézquita A, Simões PI, Lima AP. No predatory bias with respect to colour familiarity for the aposematic Adelphobates galactonotus (Anura: Dendrobatidae). BEHAVIOUR 2015. [DOI: 10.1163/1568539x-00003297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aposematic colouration deters visually oriented predators because conspicuous signals are easier to detect and associate with unpalatability. Consequently, brightly coloured prey that are novel are predicted to be preyed on more than those with bright but typical colours. Here we evaluated whether predatory bias is associated with the colour differences observed at two different localities for a large, conspicuously coloured and poisonous Amazonian frog, Adelphobates galactonotus. At each locality predation experiments were carried out using frog models of two naturally occurring colours of the study species (blue and orange) and a control (brown). We found no evidence that novel colours were more vulnerable to predation than local colours. These results do not therefore support our hypothesis that predatory bias explains the geographic variation of colour in A. galactonotus.
Collapse
Affiliation(s)
- Diana Patricia Rojas
- aCoordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, P.O. Box 2223, 69011-970 Manaus, AM, Brazil
| | - Adam Stow
- bDepartment of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Adolfo Amézquita
- cDepartment of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Pedro Ivo Simões
- aCoordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, P.O. Box 2223, 69011-970 Manaus, AM, Brazil
- dLaboratório de Sistemática de Vertebrados, Pontificia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Albertina Pimentel Lima
- aCoordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, P.O. Box 2223, 69011-970 Manaus, AM, Brazil
| |
Collapse
|
36
|
Londoño GA, García DA, Sánchez Martínez MA. Morphological and Behavioral Evidence of Batesian Mimicry in Nestlings of a Lowland Amazonian Bird. Am Nat 2015; 185:135-41. [DOI: 10.1086/679106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Differential detectability of polymorphic warning signals under varying light environments. Behav Processes 2014; 109 Pt B:164-72. [DOI: 10.1016/j.beproc.2014.08.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 08/09/2014] [Accepted: 08/18/2014] [Indexed: 11/20/2022]
|
38
|
Abstract
Polarization of light, and visual sensitivity to it, is pervasive across aquatic and terrestrial environments. Documentation of invertebrate use of polarized light is widespread from navigation and foraging to species recognition. However, studies demonstrating that polarization body patterning serves as a communication signal (e.g., with evidence of changes in receiver behavior) are rare among invertebrate taxa and conspicuously absent among vertebrates. Here, we investigate polarization-mediated communication by northern swordtails, Xiphophorus nigrensis, using a custom-built videopolarimeter to measure polarization signals and an experimental paradigm that manipulates polarization signals without modifying their brightness or color. We conducted mate choice trials in an experimental tank that illuminates a pair of males with light passed through a polarization filter and a diffusion filter. By alternating the order of these filters between males, we presented females with live males that differed in polarization reflectance by >200% but with intensity and color differences below detection thresholds (∼5%). Combining videopolarimetry and polarization-manipulated mate choice trials, we found sexually dimorphic polarized reflectance and polarization-dependent female mate choice behavior with no polarization-dependent courtship behavior by males. Male swordtails exhibit greater within-body and body-to-background polarization contrast than females, and females preferentially associate with high-polarization-reflecting males. We also found limited support that males increase polarization contrast in social conditions over asocial conditions. Polarization cues in mate choice contexts may provide aquatic vertebrates with enhanced detection of specific display features (e.g., movements, angular information), as well as a signaling mechanism that may enhance detection by intended viewers while minimizing detection by others.
Collapse
|
39
|
Qvarnström A, Rudh A, Edström T, Ödeen A, Løvlie H, Tullberg BS. Coarse dark patterning functionally constrains adaptive shifts from aposematism to crypsis in strawberry poison frogs. Evolution 2014; 68:2793-803. [PMID: 24990085 DOI: 10.1111/evo.12487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/04/2014] [Indexed: 11/28/2022]
Abstract
Ecological specialization often requires tight coevolution of several traits, which may constrain future evolutionary pathways and make species more prone to extinction. Aposematism and crypsis represent two specialized adaptations to avoid predation. We tested whether the combined effects of color and pattern on prey conspicuousness functionally constrain or facilitate shifts between these two adaptations. We combined data from 17 natural populations of strawberry poison frogs, Oophaga pumilio with an experimental approach using digitalized images of frogs and chickens as predators. We show that bright coloration often co-occurs with coarse patterning among the natural populations. Dull green frogs with coarse patterning are rare in nature but in the experiment they were as easily detected as bright red frogs suggesting that this trait combination represents a transient evolutionary state toward aposematism. Hence, a gain of either bright color or coarse patterning leads to conspicuousness, but a transition back to crypsis would be functionally constrained in populations with both bright color and coarse patterning by requiring simultaneous changes in two traits. Thus, populations (or species) signaling aposematism by conspicuous color should be less likely to face an evolutionary dead end and more likely to radiate than populations with both conspicuous color and coarse patterning.
Collapse
Affiliation(s)
- Anna Qvarnström
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
40
|
Relative effectiveness of blue and orange warning colours in the contexts of innate avoidance, learning and generalization. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.03.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Abstract
Our view of the evolution of sexually selected traits and preferences was influenced radically in the 1990s by studies that emphasized how signals interact with sensory properties of receivers. Here, twenty-five years later, we review evidence that has accumulated in support of this idea. We replace the term sensory biases with perceptual biases to emphasize the growing knowledge of how cognitive processes generate selection on sexual traits. We show that mating preferences among conspecifics (e.g., sexual selection by mate choice) often are influenced by perceptual adaptations and constraints that have evolved in other contexts. We suggest that these perceptual biases need not be costly to females when they influence mate choice because in many cases they generate direct benefits. Although we do not reject a role for indirect benefits in mate choice, such as good genes, exclusive focus on eugenic mate choice limits our understanding of the evolution of the remarkable diversity of sexually selected traits.
Collapse
Affiliation(s)
- Michael J. Ryan
- Department of Integrative Biology, University of Texas, Austin, Texas 78712;,
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Panama
| | - Molly E. Cummings
- Department of Integrative Biology, University of Texas, Austin, Texas 78712;,
| |
Collapse
|
42
|
Neotropical poison frogs: evolution’s guide to parenting, fashion and communication in a dynamic world. Evol Ecol 2013. [DOI: 10.1007/s10682-013-9643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
|