1
|
De Kort H, Legrand S, Honnay O, Buckley J. Transposable elements maintain genome-wide heterozygosity in inbred populations. Nat Commun 2022; 13:7022. [PMID: 36396660 PMCID: PMC9672359 DOI: 10.1038/s41467-022-34795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022] Open
Abstract
Elevated levels of inbreeding increase the risk of inbreeding depression and extinction, yet many inbred species are widespread, suggesting that inbreeding has little impact on evolutionary potential. Here, we explore the potential for transposable elements (TEs) to maintain genetic variation in functional genomic regions under extreme inbreeding. Capitalizing on the mixed mating system of Arabidopsis lyrata, we assess genome-wide heterozygosity and signatures of selection at single nucleotide polymorphisms near transposable elements across an inbreeding gradient. Under intense inbreeding, we find systematically elevated heterozygosity downstream of several TE superfamilies, associated with signatures of balancing selection. In addition, we demonstrate increased heterozygosity in stress-responsive genes that consistently occur downstream of TEs. We finally reveal that TE superfamilies are associated with specific signatures of selection that are reproducible across independent evolutionary lineages of A. lyrata. Together, our study provides an important hypothesis for the success of self-fertilizing species.
Collapse
Affiliation(s)
- Hanne De Kort
- grid.5596.f0000 0001 0668 7884Plant Conservation and Population Biology, University of Leuven, Kasteelpark Arenberg 31-2435, BE-3001 Leuven, Belgium
| | - Sylvain Legrand
- grid.503422.20000 0001 2242 6780Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Olivier Honnay
- grid.5596.f0000 0001 0668 7884Plant Conservation and Population Biology, University of Leuven, Kasteelpark Arenberg 31-2435, BE-3001 Leuven, Belgium
| | - James Buckley
- grid.11201.330000 0001 2219 0747School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL1 2BT UK
| |
Collapse
|
2
|
Gorman CE, Bond L, van Kleunen M, Dorken ME, Stift M. Limited phenological and pollinator-mediated isolation among selfing and outcrossing Arabidopsis lyrata populations. Proc Biol Sci 2020; 287:20202323. [PMID: 33234079 DOI: 10.1098/rspb.2020.2323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transitions from outcrossing to selfing have been a frequent evolutionary shift in plants and clearly play a role in species divergence. However, many questions remain about the initial mechanistic basis of reproductive isolation during the evolution of selfing. For instance, how important are pre-zygotic pre-pollination mechanisms (e.g. changes in phenology and pollinator visitation) in maintaining reproductive isolation between newly arisen selfing populations and their outcrossing ancestors? To test whether changes in phenology and pollinator visitation isolate selfing populations of Arabidopsis lyrata from outcrossing populations, we conducted a common garden experiment with plants from selfing and outcrossing populations as well as their between-population hybrids. Specifically, we asked whether there was isolation between outcrossing and selfing plants and their between-population hybrids through differences in (1) the timing or intensity of flowering; and/or (2) pollinator visitation. We found that phenology largely overlapped between plants from outcrossing and selfing populations. There were also no differences in pollinator preference related to mating system. Additionally, pollinators preferred to visit flowers on the same plant rather than exploring nearby plants, creating a large opportunity for self-fertilization. Overall, this suggests that pre-zygotic pre-pollination mechanisms do not strongly reproductively isolate plants from selfing and outcrossing populations of Arabidopsis lyrata.
Collapse
Affiliation(s)
- Courtney E Gorman
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Lindsay Bond
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, Canada K9J 0G2
| | - Mark van Kleunen
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, People's Republic of China
| | - Marcel E Dorken
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, Canada K9J 0G2
| | - Marc Stift
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| |
Collapse
|
3
|
Gorman CE, Steinecke C, van Kleunen M, Dorken ME, Stift M. A shift towards the annual habit in selfing Arabidopsis lyrata. Biol Lett 2020; 16:20200402. [PMID: 32991824 PMCID: PMC7532718 DOI: 10.1098/rsbl.2020.0402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/09/2020] [Indexed: 11/12/2022] Open
Abstract
An annual life history is often associated with the ability to self-fertilize. However, it is unknown whether the evolution of selfing commonly precedes the evolution of annuality, or vice versa. Using a 2-year common garden experiment, we asked if the evolution of selfing in the normally perennial Arabidopsis lyrata was accompanied by a shift towards the annual habit. Despite their very recent divergence from obligately outcrossing populations, selfing plants exhibited a 39% decrease in over-winter survival after the first year compared with outcrossing plants. Our data ruled out the most obvious underlying mechanism: differences in reproductive investment in the first year did not explain differences in survival. We conclude that transitions to selfing in perennial A. lyrata may be accompanied by a shift towards annuality, but drivers of the process require further investigation.
Collapse
Affiliation(s)
- Courtney E. Gorman
- Biology Department, University of Konstanz, Konstanz, Baden-Württemberg, Germany
| | | | - Mark van Kleunen
- Biology Department, University of Konstanz, Konstanz, Baden-Württemberg, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, People's Republic of China
| | - Marcel E. Dorken
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Marc Stift
- Biology Department, University of Konstanz, Konstanz, Baden-Württemberg, Germany
| |
Collapse
|
4
|
Perrier A, Sánchez-Castro D, Willi Y. Expressed mutational load increases toward the edge of a species' geographic range. Evolution 2020; 74:1711-1723. [PMID: 32538471 DOI: 10.1111/evo.14042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/26/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
There is no general explanation for why species have restricted geographic distributions. One hypothesis posits that range expansion or increasing scarcity of suitable habitat results in accumulation of mutational load due to enhanced genetic drift, which constrains population performance toward range limits and further expansion. We tested this hypothesis in the North American plant, Arabidopsis lyrata. We experimentally assessed mutational load by crossing plants of 20 populations from across the entire species range and by raising the offspring of within- and between-population crosses at five common garden sites within and beyond the range. Offspring performance was tracked over three growing seasons. The heterosis effect, depicting expressed mutational load, was increased in populations with heightened genomic estimates of load, longer expansion distance or long-term isolation, and a selfing mating system. The decline in performance of within-population crosses amounted to 80%. Mutation accumulation due to past range expansion and long-term isolation of populations in the area of range margins is therefore a strong determinant of population-mean performance, and the magnitude of effect may be sufficient to cause range limits.
Collapse
Affiliation(s)
- Antoine Perrier
- Department of Environmental Sciences, University of Basel, Basel, 4056, Switzerland
| | - Darío Sánchez-Castro
- Department of Environmental Sciences, University of Basel, Basel, 4056, Switzerland
| | - Yvonne Willi
- Department of Environmental Sciences, University of Basel, Basel, 4056, Switzerland
| |
Collapse
|
5
|
Buckley J, Daly R, Cobbold CA, Burgess K, Mable BK. Changing environments and genetic variation: natural variation in inbreeding does not compromise short-term physiological responses. Proc Biol Sci 2019; 286:20192109. [PMID: 31744436 DOI: 10.1098/rspb.2019.2109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Selfing plant lineages are surprisingly widespread and successful in a broad range of environments, despite showing reduced genetic diversity, which is predicted to reduce their long-term evolutionary potential. However, appropriate short-term plastic responses to new environmental conditions might not require high levels of standing genetic variation. In this study, we tested whether mating system variation among populations, and associated changes in genetic variability, affected short-term responses to environmental challenges. We compared relative fitness and metabolome profiles of naturally outbreeding (genetically diverse) and inbreeding (genetically depauperate) populations of a perennial plant, Arabidopsis lyrata, under constant growth chamber conditions and an outdoor common garden environment outside its native range. We found no effect of inbreeding on survival, flowering phenology or short-term physiological responses. Specifically, naturally occurring inbreeding had no significant effects on the plasticity of metabolome profiles, using either multivariate approaches or analysis of variation in individual metabolites, with inbreeding populations showing similar physiological responses to outbreeding populations over time in both growing environments. We conclude that low genetic diversity in naturally inbred populations may not always compromise fitness or short-term physiological capacity to respond to environmental change, which could help to explain the global success of selfing mating strategies.
Collapse
Affiliation(s)
- James Buckley
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Rónán Daly
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | - Karl Burgess
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
6
|
Carleial S, van Kleunen M, Stift M. Relatively weak inbreeding depression in selfing but also in outcrossing populations of North American Arabidopsis lyrata. J Evol Biol 2017; 30:1994-2004. [PMID: 28833878 DOI: 10.1111/jeb.13169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 08/01/2017] [Accepted: 08/09/2017] [Indexed: 01/28/2023]
Abstract
Hermaphroditic plants can potentially self-fertilize, but most possess adaptations that promote outcrossing. However, evolutionary transitions to higher selfing rates are frequent. Selfing comes with a transmission advantage over outcrossing, but self-progeny may suffer from inbreeding depression, which forms the main barrier to the evolution of higher selfing rates. Here, we assessed inbreeding depression in the North American herb Arabidopsis lyrata, which is normally self-incompatible, with a low frequency of self-compatible plants. However, a few populations have become fixed for self-compatibility and have high selfing rates. Under greenhouse conditions, we estimated mean inbreeding depression per seed (based on cumulative vegetative performance calculated as the product of germination, survival and aboveground biomass) to be 0.34 for six outcrossing populations, and 0.26 for five selfing populations. Exposing plants to drought and inducing defences with jasmonic acid did not magnify these estimates. For outcrossing populations, however, inbreeding depression per seed may underestimate true levels of inbreeding depression, because self-incompatible plants showed strong reductions in seed set after (enforced) selfing. Inbreeding-depression estimates incorporating seed set averaged 0.63 for outcrossing populations (compared to 0.30 for selfing populations). However, this is likely an overestimate because exposing plants to 5% CO2 to circumvent self-incompatibility to produce selfed seed might leave residual effects of self-incompatibility that contribute to reduced seed set. Nevertheless, our estimates of inbreeding depression were clearly lower than previous estimates based on the same performance traits in outcrossing European populations of A. lyrata, which may help explain why selfing could evolve in North American A. lyrata.
Collapse
Affiliation(s)
- S Carleial
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - M van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - M Stift
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
7
|
Field Guide to Plant Model Systems. Cell 2017; 167:325-339. [PMID: 27716506 DOI: 10.1016/j.cell.2016.08.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/28/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied.
Collapse
|
8
|
Joschinski J. Benefits and costs of aphid phenological bet-hedging strategies. RESEARCH IDEAS AND OUTCOMES 2016. [DOI: 10.3897/rio.2.e9580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|