1
|
Gonzalez M, Carazzone C. Eco-Metabolomics Applied to the Chemical Ecology of Poison Frogs (Dendrobatoidea). J Chem Ecol 2023; 49:570-598. [PMID: 37594619 PMCID: PMC10725362 DOI: 10.1007/s10886-023-01443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023]
Abstract
Amphibians are one of the most remarkable sources of unique natural products. Biogenic amines, peptides, bufodienolides, alkaloids, and volatile organic compounds have been characterized in different species. The superfamily Dendrobatoidea represents one of the most enigmatic cases of study in chemical ecology because their skin secretome is composed by a complex mixture (i.e. cocktail) of highly lethal and noxious unique alkaloid structures. While chemical defences from dendrobatoids (families Dendrobatidae and Aromobatidae) have been investigated employing ecological, behavioral, phylogenetic and evolutionary perspectives, studies about the analytical techniques needed to perform the chemical characterization have been neglected for many years. Therefore, our aim is to summarize the current methods applied for the characterization of chemical profiles in dendrobatoids and to illustrate innovative Eco-metabolomics strategies that could be translated to this study model. This approach could be extended to natural products other than alkaloids and implemented for the chemical analysis of different species of dendrobatoids employing both low- and high-resolution mass spectrometers. Here, we overview important biological features to be considered, procedures that could be applied to perform the chemical characterization, steps and tools to perform an Eco-metabolomic analysis, and a final discussion about future perspectives.
Collapse
Affiliation(s)
- Mabel Gonzalez
- Department of Chemistry, Universidad de los Andes, 4976, Bogotá, AA, Colombia.
- Department of Biology, Stanford University, Palo Alto, CA, 94305, USA.
| | - Chiara Carazzone
- Department of Chemistry, Universidad de los Andes, 4976, Bogotá, AA, Colombia.
| |
Collapse
|
2
|
He S, Ren T, Lin W, Yang X, Hao T, Zhao G, Luo W, Nie Q, Zhang X. Identification of candidate genes associated with skin yellowness in yellow chickens. Poult Sci 2023; 102:102469. [PMID: 36709583 PMCID: PMC9922980 DOI: 10.1016/j.psj.2022.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
The yellow color of the skin is an important economic trait for yellow chickens. Low and non-uniform skin yellowness would reduce economic efficiency. However, the regulatory mechanism of chicken skin yellowness has not been fully elucidated. In this study, we evaluated the skin yellowness of 819 chickens by colorimeter and digital camera, which are from the same batch and the same age of 2 pure lines with significant differences in skin yellowness. A total of 982 candidate differential expressed genes (DEGs) were detected in duodenal tissue by RNA-seq analysis for high and low yellowness chickens. Among the DEGs, we chose fatty acid translocase (CD36) gene and identified a single nucleotide polymorphism (SNP) upstream of the CD36 gene that was significantly associated with skin yellowness at multiple parts of the chicken, and its different genotypes had significant effects on the promoter activity of the CD36 gene. These findings will help to further elucidate the molecular mechanism of chicken skin yellowness and is helpful for improving chicken skin yellowness.
Collapse
Affiliation(s)
- Shizi He
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Tuanhui Ren
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Wujian Lin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Xiuxian Yang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Tianqi Hao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Guoxi Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Wen Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China,Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
3
|
Stuckert AMM, Chouteau M, McClure M, LaPolice TM, Linderoth T, Nielsen R, Summers K, MacManes MD. The genomics of mimicry: Gene expression throughout development provides insights into convergent and divergent phenotypes in a Müllerian mimicry system. Mol Ecol 2021; 30:4039-4061. [PMID: 34145931 PMCID: PMC8457190 DOI: 10.1111/mec.16024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/13/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
A common goal in evolutionary biology is to discern the mechanisms that produce the astounding diversity of morphologies seen across the tree of life. Aposematic species, those with a conspicuous phenotype coupled with some form of defence, are excellent models to understand the link between vivid colour pattern variations, the natural selection shaping it, and the underlying genetic mechanisms underpinning this variation. Mimicry systems in which multiple species share the same conspicuous phenotype can provide an even better model for understanding the mechanisms of colour production in aposematic species, especially if comimics have divergent evolutionary histories. Here we investigate the genetic mechanisms by which vivid colour and pattern are produced in a Müllerian mimicry complex of poison frogs. We did this by first assembling a high-quality de novo genome assembly for the mimic poison frog Ranitomeya imitator. This assembled genome is 6.8 Gbp in size, with a contig N50 of 300 Kbp R. imitator and two colour morphs from both Ranitomeya fantastica and R. variabilis which R. imitator mimics. We identified a large number of pigmentation and patterning genes that are differentially expressed throughout development, many of them related to melanocyte development, melanin synthesis, iridophore development and guanine synthesis. Polytypic differences within species may be the result of differences in expression and/or timing of expression, whereas convergence for colour pattern between species does not appear to be due to the same changes in gene expression. In addition, we identify the pteridine synthesis pathway (including genes such as qdpr and xdh) as a key driver of the variation in colour between morphs of these species. Finally, we hypothesize that genes in the keratin family are important for producing different structural colours within these frogs.
Collapse
Affiliation(s)
- Adam M. M. Stuckert
- Department of Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Mathieu Chouteau
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA)Université de Guyane, CNRS, IFREMERCayenneFrance
| | - Melanie McClure
- Laboratoire Écologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA)Université de Guyane, CNRS, IFREMERCayenneFrance
| | - Troy M. LaPolice
- Department of Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
| | - Tyler Linderoth
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Rasmus Nielsen
- Department of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Kyle Summers
- Department of BiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Matthew D. MacManes
- Department of Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamNew HampshireUSA
| |
Collapse
|
4
|
Barnett JB, Varela BJ, Jennings BJ, Lesbarrères D, Pruitt JN, Green DM. Habitat disturbance alters color contrast and the detectability of cryptic and aposematic frogs. Behav Ecol 2021. [DOI: 10.1093/beheco/arab032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Animals use color both to conceal and signal their presence, with patterns that match the background, disrupt shape recognition, or highlight features important for communication. The forms that these color patterns take are responses to the visual systems that observe them and the environments within which they are viewed. Increasingly, however, these environments are being affected by human activity. We studied how pattern characteristics and habitat change may affect the detectability of three frog color patterns from the Bocas del Toro archipelago in Panama: Beige-Striped Brown Allobates talamancae and two spotted morphs of Oophaga pumilio, Black-Spotted Green and Black-Spotted Red. To assess detectability, we used visual modeling of conspecifics and potential predators, along with a computer-based detection experiment with human participants. Although we found no evidence for disruptive camouflage, we did find clear evidence that A. talamancae stripes are inherently more cryptic than O. pumilio spots regardless of color. We found no evidence that color pattern polytypism in O. pumilio is related to differences in the forest floor between natural sites. We did, however, find strong evidence that human disturbance affects the visual environment and modifies absolute and rank order frog detectability. Human-induced environmental change reduces the effectiveness of camouflage in A. talamancae, reduces detectability of Black-Spotted Green O. pumilio, and increases chromatic contrast, but not detectability, in Black-Spotted Red O. pumilio. Insofar as predators may learn about prey defenses and make foraging decisions based on relative prey availability and suitability, such changes may have wider implications for predator–prey dynamics.
Collapse
Affiliation(s)
- James B Barnett
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
- Redpath Museum, McGill University, Montreal, QC, Canada
| | | | - Ben J Jennings
- The College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UK
| | | | - Jonathan N Pruitt
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - David M Green
- Redpath Museum, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
White TE, Umbers KDL. Meta-analytic evidence for quantitative honesty in aposematic signals. Proc Biol Sci 2021; 288:20210679. [PMID: 33906408 PMCID: PMC8080005 DOI: 10.1098/rspb.2021.0679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022] Open
Abstract
The combined use of noxious chemical defences and conspicuous warning colours is a ubiquitous anti-predator strategy. That such signals advertise the presence of defences is inherent to their function, but their predicted potential for quantitative honesty-the positive scaling of signal salience with the strength of protection-is the subject of enduring debate. Here, we systematically synthesized the available evidence to test this prediction using meta-analysis. We found evidence for a positive correlation between warning colour expression and the extent of chemical defences across taxa. Notably, this relationship held at all scales; among individuals, populations and species, though substantial between-study heterogeneity remains unexplained. Consideration of the design of signals revealed that all visual features, from colour to contrast, were equally informative of the extent of prey defence. Our results affirm a central prediction of honesty-based models of signal function and narrow the scope of possible mechanisms shaping the evolution of aposematism. They suggest diverse pathways to the encoding and exchange of information, while highlighting the need for deeper knowledge of the ecology of chemical defences to enrich our understanding of this widespread anti-predator adaptation.
Collapse
Affiliation(s)
- Thomas E. White
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2106, Australia
| | - Kate D. L. Umbers
- School of Science, Western Sydney University, Penrith, New South Wales 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales 2751, Australia
| |
Collapse
|
6
|
Twomey E, Johnson JD, Castroviejo-Fisher S, Van Bocxlaer I. A ketocarotenoid-based colour polymorphism in the Sira poison frog Ranitomeya sirensis indicates novel gene interactions underlying aposematic signal variation. Mol Ecol 2020; 29:2004-2015. [PMID: 32402099 DOI: 10.1111/mec.15466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/12/2023]
Abstract
The accumulation of red ketocarotenoids is an important component of coloration in many organisms, but the underlying mechanisms are poorly understood. In some organisms, ketocarotenoids are sequestered from the diet and can accumulate when enzymes responsible for carotenoid breakdown are disrupted. In other organisms, ketocarotenoids are formed endogenously from dietary precursors via oxidation reactions carried out by carotenoid ketolase enzymes. Here, we study the genetic basis of carotenoid coloration in an amphibian. We demonstrate that a red/yellow polymorphism in the dendrobatid poison frog Ranitomeya sirensis is due to the presence/absence of ketocarotenoids. Using whole-transcriptome sequencing of skins and livers, we found that a transcript encoding a cytochrome P450 enzyme (CYP3A80) is expressed 3.4-fold higher in livers of red frogs versus yellow. As CYP3A enzymes are known carotenoid ketolases in other organisms, our results point to CYP3A80 as a strong candidate for a carotenoid ketolase in amphibians. Furthermore, in red frogs, the transcript encoding the carotenoid cleavage enzyme BCO2 is expressed at a low level or as a splice variant lacking key catalytic amino acids. This suggests that BCO2 function may be disrupted in red frogs, providing a mechanism whereby the accumulation of ketocarotenoids and their dietary precursors may be enhanced.
Collapse
Affiliation(s)
- Evan Twomey
- Laboratorio de Sistemática de Vertebrados, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - James D Johnson
- Department of Chemistry, Florida State University, Tallahassee, FL, USA
| | - Santiago Castroviejo-Fisher
- Laboratorio de Sistemática de Vertebrados, Pontificia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Department of Herpetology, American Museum of Natural History, New York, NY, USA
| | - Ines Van Bocxlaer
- Amphibian Evolution Laboratory, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
7
|
Rodríguez A, Mundy NI, Ibáñez R, Pröhl H. Being red, blue and green: the genetic basis of coloration differences in the strawberry poison frog (Oophaga pumilio). BMC Genomics 2020; 21:301. [PMID: 32293261 PMCID: PMC7158012 DOI: 10.1186/s12864-020-6719-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/05/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Animal coloration is usually an adaptive attribute, under strong local selection pressures and often diversified among species or populations. The strawberry poison frog (Oophaga pumilio) shows an impressive array of color morphs across its distribution in Central America. Here we quantify gene expression and genetic variation to identify candidate genes involved in generating divergence in coloration between populations of red, green and blue O. pumilio from the Bocas del Toro archipelago in Panama. RESULTS We generated a high quality non-redundant reference transcriptome by mapping the products of genome-guided and de novo transcriptome assemblies onto a re-scaffolded draft genome of O. pumilio. We then measured gene expression in individuals of the three color phenotypes and identified color-associated candidate genes by comparing differential expression results against a list of a priori gene sets for five different functional categories of coloration - pteridine synthesis, carotenoid synthesis, melanin synthesis, iridophore pathways (structural coloration), and chromatophore development. We found 68 candidate coloration loci with significant expression differences among the color phenotypes. Notable upregulated examples include pteridine synthesis genes spr, xdh and pts (in red and green frogs); carotenoid metabolism genes bco2 (in blue frogs), scarb1 (in red frogs), and guanine metabolism gene psat1 (in blue frogs). We detected significantly higher expression of the pteridine synthesis gene set in red and green frogs versus blue frogs. In addition to gene expression differences, we identified 370 outlier SNPs on 162 annotated genes showing signatures of diversifying selection, including eight pigmentation-associated genes. CONCLUSIONS Gene expression in the skin of the three populations of frogs with differing coloration is highly divergent. The strong signal of differential expression in pteridine genes is consistent with a major role of these genes in generating the coloration differences among the three morphs. However, the finding of differentially expressed genes across pathways and functional categories suggests that multiple mechanisms are responsible for the coloration differences, likely involving both pigmentary and structural coloration. In addition to regulatory differences, we found potential evidence of differential selection acting at the protein sequence level in several color-associated loci, which could contribute to the color polymorphism.
Collapse
Affiliation(s)
- Ariel Rodríguez
- Institute of Zoology, University of Veterinary Medicine of Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Nicholas I. Mundy
- Department of Zoology, University of Cambridge, Downing St, Cambridge, CB2 3EJ England
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092 Panamá, República de Panamá
- Sistema Nacional de Investigación, Secretaría Nacional de Ciencia, Tecnología e Innovación, Apartado, 0816-02852 Panamá, República de Panamá
| | - Heike Pröhl
- Institute of Zoology, University of Veterinary Medicine of Hannover, Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
8
|
Twomey E, Kain M, Claeys M, Summers K, Castroviejo-Fisher S, Van Bocxlaer I. Mechanisms for Color Convergence in a Mimetic Radiation of Poison Frogs. Am Nat 2020; 195:E132-E149. [PMID: 32364784 DOI: 10.1086/708157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In animals, bright colors often evolve to mimic other species when a resemblance is selectively favored. Understanding the proximate mechanisms underlying such color mimicry can give insights into how mimicry evolves-for example, whether color convergence evolves from a shared set of mechanisms or through the evolution of novel color production mechanisms. We studied color production mechanisms in poison frogs (Dendrobatidae), focusing on the mimicry complex of Ranitomeya imitator. Using reflectance spectrometry, skin pigment analysis, electron microscopy, and color modeling, we found that the bright colors of these frogs, both within and outside the mimicry complex, are largely structural and produced by iridophores but that color production depends crucially on interactions with pigments. Color variation and mimicry are regulated predominantly by iridophore platelet thickness and, to a lesser extent, concentration of the red pteridine pigment drosopterin. Compared with each of the four morphs of model species that it resembles, R. imitator displays greater variation in both structural and pigmentary mechanisms, which may have facilitated phenotypic divergence in this species. Analyses of nonmimetic dendrobatids in other genera demonstrate that these mechanisms are widespread within the family and that poison frogs share a complex physiological "color palette" that can produce diverse and highly reflective colors.
Collapse
|
9
|
Geographically separated orange and blue populations of the Amazonian poison frog Adelphobates galactonotus (Anura, Dendrobatidae) do not differ in alkaloid composition or palatability. CHEMOECOLOGY 2019. [DOI: 10.1007/s00049-019-00291-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Briolat ES, Zagrobelny M, Olsen CE, Blount JD, Stevens M. Sex differences but no evidence of quantitative honesty in the warning signals of six-spot burnet moths (Zygaena filipendulae L.). Evolution 2018; 72:1460-1474. [PMID: 29767461 PMCID: PMC6099377 DOI: 10.1111/evo.13505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/22/2018] [Accepted: 05/05/2018] [Indexed: 11/29/2022]
Abstract
The distinctive black and red wing pattern of six-spot burnet moths (Zygaena filipendulae, L.) is a classic example of aposematism, advertising their potent cyanide-based defences. While such warning signals provide a qualitatively honest signal of unprofitability, the evidence for quantitative honesty, whereby variation in visual traits could provide accurate estimates of individual toxicity, is more equivocal. Combining measures of cyanogenic glucoside content and wing color from the perspective of avian predators, we investigate the relationship between coloration and defences in Z. filipendulae, to test signal honesty both within and across populations. There were no significant relationships between mean cyanogenic glucoside concentration and metrics of wing coloration across populations in males, yet in females higher cyanogenic glucoside levels were associated with smaller and lighter red forewing markings. Trends within populations were similarly inconsistent with quantitative honesty, and persistent differences between the sexes were apparent: larger females, carrying a greater total cyanogenic glucoside load, displayed larger but less conspicuous markings than smaller males, according to several color metrics. The overall high aversiveness of cyanogenic glucosides and fluctuations in color and toxin levels during an individual's lifetime may contribute to these results, highlighting generally important reasons why signal honesty should not always be expected in aposematic species.
Collapse
Affiliation(s)
- Emmanuelle Sophie Briolat
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynCornwall TR10 9FEUnited Kingdom
| | - Mika Zagrobelny
- Plant Biochemistry Laboratory and Copenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of Copenhagen40 Thorvaldsensvej, DK‐1871 Frederiksberg CCopenhagenDenmark
| | - Carl Erik Olsen
- Plant Biochemistry Laboratory and Copenhagen Plant Science CentreDepartment of Plant and Environmental SciencesUniversity of Copenhagen40 Thorvaldsensvej, DK‐1871 Frederiksberg CCopenhagenDenmark
| | - Jonathan D. Blount
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynCornwall TR10 9FEUnited Kingdom
| | - Martin Stevens
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynCornwall TR10 9FEUnited Kingdom
| |
Collapse
|
11
|
Casas-Cardona S, Márquez R, Vargas-Salinas F. Different colour morphs of the poison frogAndinobates bombetes(Dendrobatidae) are similarly effective visual predator deterrents. Ethology 2018. [DOI: 10.1111/eth.12729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Santiago Casas-Cardona
- Grupo de Evolución, Ecología y Conservación (EECO); Programa de Biología; Facultad de Ciencias Básicas y Tecnologías; Universidad del Quindío; Armenia Colombia
| | - Roberto Márquez
- Department of Ecology and Evolution; University of Chicago; Chicago IL USA
| | - Fernando Vargas-Salinas
- Grupo de Evolución, Ecología y Conservación (EECO); Programa de Biología; Facultad de Ciencias Básicas y Tecnologías; Universidad del Quindío; Armenia Colombia
| |
Collapse
|
12
|
Dreher CE, Rodríguez A, Cummings ME, Pröhl H. Mating status correlates with dorsal brightness in some but not all poison frog populations. Ecol Evol 2017; 7:10503-10512. [PMID: 29299233 PMCID: PMC5743646 DOI: 10.1002/ece3.3531] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 02/04/2023] Open
Abstract
Sexual signals are important for intraspecific communication and mate selection, but their evolution may be driven by both natural and sexual selection, and stochastic processes. Strawberry poison frogs (Oophaga pumilio) show strong color divergence among populations, but coloration also varies among individuals of the same population. The importance of coloration for female mate choice has been studied intensely, and sexual selection seems to affect color divergence in strawberry poison frogs. However, the effect of coloration on mating success under field conditions has received very little attention. Furthermore, few studies examined how phenotypic variation among individuals of the same color morph affects mate selection under natural conditions. We measured the spectral reflectance of courting and noncourting individuals and their background substrates in three geographically separated populations. In one population (Sarapiquí, Costa Rica), we found that naturally occurring courting pairs of males and females had significantly brighter dorsal coloration than individual males and females not engaged in courtship interactions. Our field observations suggest that, in the wild, females prefer brighter males while the reason for the higher courtship activity of brighter females remains unclear. Overall our results imply that brightness differences among individuals of the same color morph may actually affect reproductive success in some populations of strawberry poison frogs.
Collapse
Affiliation(s)
- Corinna E Dreher
- Institute of Zoology University of Veterinary Medicine Hannover, Foundation Hannover Germany
| | - Ariel Rodríguez
- Institute of Zoology University of Veterinary Medicine Hannover, Foundation Hannover Germany
| | - Molly E Cummings
- Section of Integrative Biology University of Texas Austin TX USA
| | - Heike Pröhl
- Institute of Zoology University of Veterinary Medicine Hannover, Foundation Hannover Germany
| |
Collapse
|
13
|
The effects of background coloration and dark spots on the risk of predation in poison frog models. Evol Ecol 2017. [DOI: 10.1007/s10682-017-9903-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|