1
|
Wolf SE, Woodruff MJ, Chang van Oordt DA, Clotfelter ED, Cristol DA, Derryberry EP, Ferguson SM, Stanback MT, Taff CC, Vitousek MN, Westneat DF, Rosvall KA. Among-population variation in telomere regulatory proteins and their potential role as hidden drivers of intraspecific variation in life history. J Anim Ecol 2024. [PMID: 38509838 DOI: 10.1111/1365-2656.14071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024]
Abstract
Biologists aim to explain patterns of growth, reproduction and ageing that characterize life histories, yet we are just beginning to understand the proximate mechanisms that generate this diversity. Existing research in this area has focused on telomeres but has generally overlooked the telomere's most direct mediator, the shelterin protein complex. Shelterin proteins physically interact with the telomere to shape its shortening and repair. They also regulate metabolism and immune function, suggesting a potential role in life history variation in the wild. However, research on shelterin proteins is uncommon outside of biomolecular work. Intraspecific analyses can play an important role in resolving these unknowns because they reveal subtle variation in life history within and among populations. Here, we assessed ecogeographic variation in shelterin protein abundance across eight populations of tree swallow (Tachycineta bicolor) with previously documented variation in environmental and life history traits. Using the blood gene expression of four shelterin proteins in 12-day-old nestlings, we tested the hypothesis that shelterin protein gene expression varies latitudinally and in relation to both telomere length and life history. Shelterin protein gene expression differed among populations and tracked non-linear variation in latitude: nestlings from mid-latitudes expressed nearly double the shelterin mRNA on average than those at more northern and southern sites. However, telomere length was not significantly related to latitude. We next assessed whether telomere length and shelterin protein gene expression correlate with 12-day-old body mass and wing length, two proxies of nestling growth linked to future fecundity and survival. We found that body mass and wing length correlated more strongly (and significantly) with shelterin protein gene expression than with telomere length. These results highlight telomere regulatory shelterin proteins as potential mediators of life history variation among populations. Together with existing research linking shelterin proteins and life history variation within populations, these ecogeographic patterns underscore the need for continued integration of ecology, evolution and telomere biology, which together will advance understanding of the drivers of life history variation in nature.
Collapse
Affiliation(s)
- Sarah E Wolf
- Department of Biology, Indiana University, Bloomington, Indiana, USA
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mary J Woodruff
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David A Chang van Oordt
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Cornell Lab of Ornithology, Ithaca, New York, USA
| | | | - Daniel A Cristol
- Department of Biology, William & Mary, Williamsburg, Virginia, USA
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Stephen M Ferguson
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
- Department of Biology, University of Richmond, Richmond, Virginia, USA
| | - Mark T Stanback
- Department of Biology, Davidson College, Davidson, North Carolina, USA
| | - Conor C Taff
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Cornell Lab of Ornithology, Ithaca, New York, USA
| | - Maren N Vitousek
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Cornell Lab of Ornithology, Ithaca, New York, USA
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, Kentucky, USA
| | | |
Collapse
|
2
|
Le Clercq LS, Kotzé A, Grobler JP, Dalton DL. Biological clocks as age estimation markers in animals: a systematic review and meta-analysis. Biol Rev Camb Philos Soc 2023; 98:1972-2011. [PMID: 37356823 DOI: 10.1111/brv.12992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
Various biological attributes associated with individual fitness in animals change predictably over the lifespan of an organism. Therefore, the study of animal ecology and the work of conservationists frequently relies upon the ability to assign animals to functionally relevant age classes to model population fitness. Several approaches have been applied to determining individual age and, while these methods have proved useful, they are not without limitations and often lack standardisation or are only applicable to specific species. For these reasons, scientists have explored the potential use of biological clocks towards creating a universal age-determination method. Two biological clocks, tooth layer annulation and otolith layering have found universal appeal. Both methods are highly invasive and most appropriate for post-mortem age-at-death estimation. More recently, attributes of cellular ageing previously explored in humans have been adapted to studying ageing in animals for the use of less-invasive molecular methods for determining age. Here, we review two such methods, assessment of methylation and telomere length, describing (i) what they are, (ii) how they change with age, and providing (iii) a summary and meta-analysis of studies that have explored their utility in animal age determination. We found that both attributes have been studied across multiple vertebrate classes, however, telomere studies were used before methylation studies and telomere length has been modelled in nearly twice as many studies. Telomere length studies included in the review often related changes to stress responses and illustrated that telomere length is sensitive to environmental and social stressors and, in the absence of repair mechanisms such as telomerase or alternative lengthening modes, lacks the ability to recover. Methylation studies, however, while also detecting sensitivity to stressors and toxins, illustrated the ability to recover from such stresses after a period of accelerated ageing, likely due to constitutive expression or reactivation of repair enzymes such as DNA methyl transferases. We also found that both studied attributes have parentally heritable features, but the mode of inheritance differs among taxa and may relate to heterogamy. Our meta-analysis included more than 40 species in common for methylation and telomere length, although both analyses included at least 60 age-estimation models. We found that methylation outperforms telomere length in terms of predictive power evidenced from effect sizes (more than double that observed for telomeres) and smaller prediction intervals. Both methods produced age correlation models using similar sample sizes and were able to classify individuals into young, middle, or old age classes with high accuracy. Our review and meta-analysis illustrate that both methods are well suited to studying age in animals and do not suffer significantly from variation due to differences in the lifespan of the species, genome size, karyotype, or tissue type but rather that quantitative method, patterns of inheritance, and environmental factors should be the main considerations. Thus, provided that complex factors affecting the measured trait can be accounted for, both methylation and telomere length are promising targets to develop as biomarkers for age determination in animals.
Collapse
Affiliation(s)
- Louis-Stéphane Le Clercq
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Antoinette Kotzé
- South African National Biodiversity Institute, P.O. Box 754, Pretoria, 0001, South Africa
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - J Paul Grobler
- Department of Genetics, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Desiré Lee Dalton
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK
| |
Collapse
|
3
|
Babic NL, Johnstone CP, Reljić S, Sergiel A, Huber Đ, Reina RD. Evaluation of physiological stress in free-ranging bears: current knowledge and future directions. Biol Rev Camb Philos Soc 2023; 98:168-190. [PMID: 36176191 PMCID: PMC10086944 DOI: 10.1111/brv.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 01/12/2023]
Abstract
Stress responses, which are mediated by the neurogenic system (NS) and hypothalamic-pituitary-adrenal (HPA) axis help vertebrates maintain physiological homeostasis. Fight-or-flight responses are activated by the NS, which releases norepinephrine/noradrenaline and epinephrine/adrenaline in response to immediate stressors, whilst the HPA axis releases glucocorticoid hormones (e.g. cortisol and corticosterone) to help mitigate allostatic load. There have been many studies on stress responses of captive animals, but they are not truly reflective of typical ranges or the types of stressors encountered by free-ranging wildlife, such as responses and adaptation to environmental change, which are particularly important from a conservation perspective. As stress can influence the composition of age and sex classes of free-ranging populations both directly and indirectly, ecological research must be prioritised towards more vulnerable taxa. Generally, large predators tend to be particularly at risk of anthropogenically driven population declines because they exhibit reduced behavioural plasticity required to adapt to changing landscapes and exist in reduced geographic ranges, have small population sizes, low fecundity rates, large spatial requirements and occupy high trophic positions. As a keystone species with a long history of coexistence with humans in highly anthropogenic landscapes, there has been growing concern about how humans influence bear behaviour and physiology, via numerous short- and long-term stressors. In this review, we synthesise research on the stress response in free-ranging bear populations and evaluate the effectiveness and limitations of current methodology in measuring stress in bears to identify the most effective metrics for future research. Particularly, we integrate research that utilised haematological variables, cardiac monitors and Global Positioning System (GPS) collars, serum/plasma and faecal glucocorticoid concentrations, hair cortisol levels, and morphological metrics (primarily skulls) to investigate the stress response in ursids in both short- and long-term contexts. We found that in free-ranging bears, food availability and consumption have the greatest influence on individual stress, with mixed responses to anthropogenic influences. Effects of sex and age on stress are also mixed, likely attributable to inconsistent methods. We recommend that methodology across all stress indicators used in free-ranging bears should be standardised to improve interpretation of results and that a wider range of species should be incorporated in future studies.
Collapse
Affiliation(s)
- Natarsha L Babic
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - Christopher P Johnstone
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| | - Slaven Reljić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia
| | - Agnieszka Sergiel
- Institute of Nature Conservation, Polish Academy of Sciences, Adama Mickiewicza 33, Krakow, 31120, Poland
| | - Đuro Huber
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb, 10000, Croatia.,Institute of Nature Conservation, Polish Academy of Sciences, Adama Mickiewicza 33, Krakow, 31120, Poland
| | - Richard D Reina
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, 3800, Victoria, Australia
| |
Collapse
|
4
|
Hatch KA, Kester KA, Loveless A, Roeder BL, van Manen FT. Tooth wear and the apparent consumption of human foods among American black bears (Ursus americanus) in Great Smoky Mountains National Park, USA. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Kärkkäinen T, Laaksonen T, Burgess M, Cantarero A, Martínez‐Padilla J, Potti J, Moreno J, Thomson RL, Tilgar V, Stier A. Population differences in the length and early-life dynamics of telomeres among European pied flycatchers. Mol Ecol 2022; 31:5966-5978. [PMID: 34875134 PMCID: PMC9788103 DOI: 10.1111/mec.16312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/09/2021] [Accepted: 12/01/2021] [Indexed: 01/31/2023]
Abstract
Telomere length and shortening rate are increasingly being used as biomarkers for long-term costs in ecological and evolutionary studies because of their relationships with survival and fitness. Both early-life conditions and growth, and later-life stressors can create variation in telomere shortening rate. Studies on between-population telomere length and dynamics are scarce, despite the expectation that populations exposed to varying environmental constraints would present divergent telomere length patterns. The pied flycatcher (Ficedula hypoleuca) is a passerine bird breeding across Eurasia (from Spain to western Siberia) and migrating through the Iberian Peninsula to spend the nonbreeding period in sub-Saharan Africa. Thus, different populations show marked differences in migration distance. We studied the large-scale variation of telomere length and early-life dynamics in the pied flycatcher by comparing six European populations across a north-south gradient (Finland, Estonia, England and Spain) predicting a negative effect of migration distance on adult telomere length, and of nestling growth on nestling telomere dynamics. There were clear population differences in telomere length, with English birds from midlatitudes having the longest telomeres. Telomere length did not thus show consistent latitudinal variation and was not linearly linked to differences in migration distance. Early-life telomere shortening rate tended to vary between populations. Fast growth was associated with shorter telomeres in the early life, but faster nestling growth affected telomeres more negatively in northern than southern populations. While the sources of between-population differences in telomere-related biology remain to be more intensively studied, our study illustrates the need to expand telomere studies at the between-population level.
Collapse
Affiliation(s)
| | | | - Malcolm Burgess
- RSPB Centre for Conservation ScienceSandyUK,Centre for Research in Animal BehaviourUniversity of ExeterExeterUK
| | - Alejandro Cantarero
- Department of BiologyUniversity of TurkuTurkuFinland,Department of Evolutionary EcologyMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain
| | - Jesús Martínez‐Padilla
- Department of Biological Conservation and Ecosystem RestorationPyrenean Institute of Ecology (CSIC)JacaSpain
| | - Jaime Potti
- Department of Evolutionary EcologyEstación Biológica de Doñana (CSIC)SevilleSpain
| | - Juan Moreno
- Department of Evolutionary EcologyMuseo Nacional de Ciencias Naturales (CSIC)MadridSpain
| | - Robert L. Thomson
- Department of BiologyUniversity of TurkuTurkuFinland,Department of Biological SciencesUniversity of Cape TownRondeboschSouth Africa,FitzPatrick Institute of African OrnithologyDST‐NRF Centre of ExcellenceUniversity of Cape TownRondeboschSouth Africa
| | - Vallo Tilgar
- Department of ZoologyInstitute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Antoine Stier
- Department of BiologyUniversity of TurkuTurkuFinland,Univ LyonUniversité Claude Bernard Lyon 1CNRSENTPEUMR 5023 LEHNAVilleurbanneFrance
| |
Collapse
|
6
|
Remot F, Ronget V, Froy H, Rey B, Gaillard JM, Nussey DH, Lemaitre JF. Decline in telomere length with increasing age across nonhuman vertebrates: A meta-analysis. Mol Ecol 2022; 31:5917-5932. [PMID: 34437736 DOI: 10.1111/mec.16145] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023]
Abstract
The prediction that telomere length (TL) shortens with increasing age is a major element in considering the role of telomeres as a key player in evolution. While telomere attrition is found in humans both in vitro and in vivo, the increasing number of studies reporting diverse age-specific patterns of TL challenges the hypothesis of a universal decline of TL with increasing age. Here, we performed a meta-analysis to estimate the relationship between TL and age across 175 estimates encompassing 98 species of vertebrates. We found that, on average, TL does decline with increasing age during adulthood. However, this decline was weak and variable across vertebrate classes, and we also found evidence for a publication bias that might weaken our current evidence of decreasing TL with increasing age. We found no evidence for a faster decline in TL with increasing age when considering the juvenile stage (from birth to age at first reproduction) compared to the adult stage. Heterogeneity in TL ageing rates was explained by the method used to measure telomeres: detectable TL declines with increasing age were found only among studies using TRF with in-gel hybridisation and qFISH methods, but not in studies using qPCR and Southern blot-based TRF methods. While we confirmed that TL declines with increasing age in most adult vertebrates, our results identify an influence of telomere measurement methodology, which highlights the need to examine more thoroughly the effect of the method of measurement on TL estimates.
Collapse
Affiliation(s)
- Florentin Remot
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Victor Ronget
- Unité Eco-anthropologie (EA), Muséum National d'Histoire Naturelle, CNRS, Université Paris Diderot, Paris, France
| | - Hannah Froy
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.,Centre for Biodiversity Dynamics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Daniel H Nussey
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Jean-François Lemaitre
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
7
|
Seeker LA, Underwood SL, Wilbourn RV, Dorrens J, Froy H, Holland R, Ilska JJ, Psifidi A, Bagnall A, Whitelaw B, Coffey M, Banos G, Nussey DH. Telomere attrition rates are associated with weather conditions and predict productive lifespan in dairy cattle. Sci Rep 2021; 11:5589. [PMID: 33692400 PMCID: PMC7970942 DOI: 10.1038/s41598-021-84984-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Telomere length is predictive of adult health and survival across vertebrate species. However, we currently do not know whether such associations result from among-individual differences in telomere length determined genetically or by early-life environmental conditions, or from differences in the rate of telomere attrition over the course of life that might be affected by environmental conditions. Here, we measured relative leukocyte telomere length (RLTL) multiple times across the entire lifespan of dairy cattle in a research population that is closely monitored for health and milk production and where individuals are predominantly culled in response to health issues. Animals varied in their change in RLTL between subsequent measurements and RLTL shortened more during early life and following hotter summers which are known to cause heat stress in dairy cows. The average amount of telomere attrition calculated over multiple repeat samples of individuals predicted a shorter productive lifespan, suggesting a link between telomere loss and health. TL attrition was a better predictor of when an animal was culled than their average TL or the previously for this population reported significant TL at the age of 1 year. Our present results support the hypothesis that TL is a flexible trait that is affected by environmental factors and that telomere attrition is linked to animal health and survival traits. Change in telomere length may represent a useful biomarker in animal welfare studies.
Collapse
Affiliation(s)
- Luise A Seeker
- Animal & Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK.
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK.
| | - Sarah L Underwood
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rachael V Wilbourn
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jennifer Dorrens
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hannah Froy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Biodiversity Dynamics, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Rebecca Holland
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Joanna J Ilska
- Animal & Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Androniki Psifidi
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
- Royal Veterinary College, University of London, Hatfield, UK
| | | | - Bruce Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Mike Coffey
- Animal & Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
| | - Georgios Banos
- Animal & Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Daniel H Nussey
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Seeker LA. Telomere shortening correlates with harsh weather conditions in the bat species Myotis myotis. Mol Ecol 2020; 29:2951-2953. [PMID: 32745307 DOI: 10.1111/mec.15580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/27/2020] [Indexed: 01/16/2023]
Abstract
The relationship of telomere shortening and cellular ageing in cultured cells such as fibroblasts is straightforward: telomeres shorten with an increasing number of cell divisions until they trigger replicative senescence which prevents further mitotic cycles. But studies investigating the relationship between telomere shortening and ageing in whole organisms show contrasting results: while there is a clear decline in telomere length (TL) with chronological age in some species such as humans, no such decline is observed in others. In this issue of Molecular Ecology, Foley et al. (2020) show that experiencing harsh weather conditions correlates with longitudinal telomere shortening in the bat species Myotis myotis, whereas chronological age does not (Foley et al., 2020). Further, the authors investigated whether genetics influence TL and find a low heritability (h2 = 0.01-0.06) again suggesting that environmental effects are the dominant drivers of variation in TL in this species. These are important findings as there is disagreement in the literature about the relative magnitude of genetic and environmental effects contributing to TL variation in different species. This paper investigating the impact of environmental effects makes a novel and important contribution to the literature on TL in free-living mammals.
Collapse
Affiliation(s)
- Luise A Seeker
- MRC Scottish Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Chatelain M, Drobniak SM, Szulkin M. The association between stressors and telomeres in non‐human vertebrates: a meta‐analysis. Ecol Lett 2019; 23:381-398. [DOI: 10.1111/ele.13426] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Marion Chatelain
- Centre of New Technologies University of Warsaw Banacha 2C 02‐097 Warszawa Poland
| | - Szymon M. Drobniak
- Institute of Environmental Sciences Jagiellonian University Gronostajowa 7 30‐387 Kraków Poland
- Ecology & Evolution Research Centre School of Biological, Environmental and Earth Sciences University of New South Wales Sydney Australia
| | - Marta Szulkin
- Centre of New Technologies University of Warsaw Banacha 2C 02‐097 Warszawa Poland
| |
Collapse
|
10
|
Matzenbacher CA, Da Silva J, Garcia ALH, Cappetta M, de Freitas TRO. Anthropogenic Effects on Natural Mammalian Populations: Correlation Between Telomere Length and Coal Exposure. Sci Rep 2019; 9:6325. [PMID: 31004106 PMCID: PMC6474877 DOI: 10.1038/s41598-019-42804-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
The Candiota coal mine in Rio Grande do Sul (RS) is one of the largest in Brazil. Coal is a fossil fuel that causes environmental impacts from its extraction to combustion due to the release of different agents, such as polycyclic aromatic hydrocarbons (PAH) and heavy metals. Ctenomys torquatus are herbivorous and subterranean rodents that dig tunnels with their paws and teeth and can be exposed to coal through contaminated food. Exposure to pollutants can cause DNA damage and affect different tissues, inducing alterations in the population structure and genetic diversity. Our study aimed to evaluate the effect of exposure to coal and its derivatives on the C. torquatus population and to examine the relationship of coal exposure with variations in absolute telomere length (aTL), global DNA methylation and genotoxicity. Our study showed an inverse correlation between telomere length and coal exposure in addition to an increase in DNA damage. The results indicate that coal and its byproducts can contribute to the alteration of the C. torquatus population structure, as evidenced by a reduction in the number of adults.
Collapse
Affiliation(s)
- Cristina A Matzenbacher
- Department of Genetics, Federal University of Rio Grande do Sul, C.P. 15053, 91501-970, Porto Alegre, RS, Brazil
| | - Juliana Da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, ULBRA, Canoas, 92425-900, Rio Grande do Sul, Brazil.
| | - Ana Leticia H Garcia
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, ULBRA, Canoas, 92425-900, Rio Grande do Sul, Brazil.,Laboratory of Ecotoxicology, Postgraduate Program in Environmental Quality, University Feevale, ERS-239, 2755, 93525-075, Novo Hamburgo, RS, Brazil
| | - Mónica Cappetta
- Laboratorio de Epidemiología Genética, Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Thales R O de Freitas
- Department of Genetics, Federal University of Rio Grande do Sul, C.P. 15053, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
The cascading effects of human food on hibernation and cellular aging in free-ranging black bears. Sci Rep 2019; 9:2197. [PMID: 30792484 PMCID: PMC6385323 DOI: 10.1038/s41598-019-38937-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 01/15/2019] [Indexed: 11/28/2022] Open
Abstract
Human foods have become a pervasive subsidy in many landscapes, and can dramatically alter wildlife behavior, physiology, and demography. While such subsidies can enhance wildlife condition, they can also result in unintended negative consequences on individuals and populations. Seasonal hibernators possess a remarkable suite of adaptations that increase survival and longevity in the face of resource and energetic limitations. Recent work has suggested hibernation may also slow the process of senescence, or cellular aging. We investigated how use of human foods influences hibernation, and subsequently cellular aging, in a large-bodied hibernator, black bears (Ursus americanus). We quantified relative telomere length, a molecular marker for cellular age, and compared lengths in adult female bears longitudinally sampled over multiple seasons. We found that bears that foraged more on human foods hibernated for shorter periods of time. Furthermore, bears that hibernated for shorter periods of time experienced accelerated telomere attrition. Together these results suggest that although hibernation may ameliorate cellular aging, foraging on human food subsidies could counteract this process by shortening hibernation. Our findings highlight how human food subsidies can indirectly influence changes in aging at the molecular level.
Collapse
|
12
|
Angelier F, Costantini D, Blévin P, Chastel O. Do glucocorticoids mediate the link between environmental conditions and telomere dynamics in wild vertebrates? A review. Gen Comp Endocrinol 2018; 256:99-111. [PMID: 28705731 DOI: 10.1016/j.ygcen.2017.07.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/06/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
Abstract
Following the discoveries of telomeres and of their implications in terms of health and ageing, there has been a growing interest into the study of telomere dynamics in wild vertebrates. Telomeres are repeated sequences of non-coding DNA located at the terminal ends of chromosomes and they play a major role in maintaining chromosome stability. Importantly, telomeres shorten over time and shorter telomeres seem to be related with lower survival in vertebrates. Because of this potential link with longevity, it is crucial to understand not only the ecological determinants of telomere dynamics but also the regulatory endocrine mechanisms that may mediate the effect of the environment on telomeres. In this paper, we review the relationships that link environmental conditions, glucocorticoids (GC, the main hormonal mediator of allostasis) and telomere length in vertebrates. First, we review current knowledge about the determinants of inter-individual variations in telomere length. We emphasize the potential strong impact of environmental stressors and predictable life-history events on telomere dynamics. Despite recent progress, we still lack crucial basic data to fully understand the costs of several life-history stages and biotic and abiotic factors on telomere length. Second, we review the link that exists between GCs, oxidative stress and telomere dynamics in vertebrates. Although circulating GC levels may be closely and functionally linked with telomere dynamics, data are still scarce and somewhat contradictory. Further laboratory and field studies are therefore needed not only to better assess the proximate link between GC levels and telomere dynamics, but also to ultimately understand to what extent GCs and telomere length could be informative to measure the fitness costs of specific life-history stages and environmental conditions. Finally, we highlight the importance of exploring the functional links that may exist between coping styles, the GC stress response, and telomere dynamics in a life-history framework. To conclude, we raise new hypotheses regarding the potential of the GC stress response to drive the trade-off between immediate survival and telomere protection.
Collapse
Affiliation(s)
- Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, Villiers en Bois, France.
| | - David Costantini
- Muséum National d'Histoire Naturelle, UMR 7221, Paris, France; Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Pierre Blévin
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, Villiers en Bois, France
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé, CNRS-ULR, UMR 7372, Villiers en Bois, France
| |
Collapse
|