1
|
Fu Y, Song Y, Yang C, Liu X, Liu Y, Huang Y. Relationship between brain size and digestive tract length support the expensive-tissue hypothesis in Feirana quadranus. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.982590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The brain is among the most energetically costly organs in the vertebrate body, while the size of the brain varies within species. The expensive-tissue hypothesis (ETH) predicts that increasing the size of another costly organ, such as the gut, should compensate for the cost of a small brain. Here, the ETH was tested by analyzing the relationship between brain size variation and digestive tract length in a Swelled-vented frog (Feirana quadranus). A total of 125 individuals across 10 populations ranging from 586 to 1,702 m a.s.l. from the Qinling-Daba Mountains were sampled. With the increase in altitude, the brain size decreases and the digestive tract length increases. Different brain regions do not change their relative size in a consistent manner. The sizes of telencephalon and cerebellum decrease with the increase in altitude, while the olfactory nerve increases its size at high altitudes. However, the olfactory bulb and optic tectum have no significant relationship with altitude. After controlling for snout-vent length (SVL), a significant negative correlation could be found between brain size and digestive tract length in F. quadranus. Therefore, the intraspecific variation of brain size follows the general patterns of ETH in this species. The results suggest that annual mean temperature and annual precipitation are environmental factors influencing the adaptive evolution of brain size and digestive tract length. This study also suggests that food composition, activity times, and habitat complexity are the potential reasons driving the adaptive evolution of brain size and digestive tract length.
Collapse
|
2
|
Morphological Variation and Its Environmental Correlates in the Taihangshan Swelled-Vented Frog across the Qinling Mountains. Animals (Basel) 2022; 12:ani12182328. [PMID: 36139189 PMCID: PMC9495075 DOI: 10.3390/ani12182328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 01/01/2023] Open
Abstract
Simple Summary Amphibians have weak dispersal abilities and are sensitive to environmental changes, resulting in their disproportionately high risk of extinction, with many species’ populations rapidly declining. Therefore, it is critical for amphibian conservation to understand their adaptive potential by exploring how amphibians respond to environmental changes based on morphological variations. Our results showed that morphological traits of Feirana taihangnica significantly differed among ages. Along with the increase in annual mean temperature, snout-vent length showed an anti-hump trend, indicating no support for Bergmann’s rule. Mean ultraviolet-B of the highest and lowest months were positively and negatively correlated with head width, thigh length and tibia width, respectively. The present study can help understand the effects of environmental changes on morphological variations of this mountain frog species and its adaptive potential, providing important implications for species conservation. Abstract The Taihangshan swelled-vented frog (Feirana taihangnica), an endemic species to the Qinling Mountains, central China, has experienced a dramatic population decline over the last few decades. The aim of this work was to quantify morphological variation in F. taihangnica across the Qinling Mountains and examine environmental correlates of this variation of morphological traits. We implemented a hierarchical partitioning to estimate the independent contribution of each environmental variable on morphological variations. Temperature seasonality was the greatest contributor in variations of snout-vent length (SVL) and head width, and ultraviolet-B (UV-B) radiation of the lowest month was the most influential on both thigh length and tibia width. Then, we used generalized additive models to analyze the relationship between each environmental factor and morphological trait variations. Along the increasing of annual mean temperature, SVL decreased firstly and then increased, indicating no support for Bergmann’s rule. Furthermore, SVL was negatively correlated with annual precipitation, while positively with temperature seasonality. The mean UV-B of the highest and lowest months was positively and negatively correlated with head width, thigh length and tibia width, respectively. The results of this study help us to understand adaptive potential of this mountain frog species via morphological variations in the light of environmental changes.
Collapse
|
3
|
Yang S, Wang X, Hu J. Mountain frog species losing out to climate change around the Sichuan Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150605. [PMID: 34592288 DOI: 10.1016/j.scitotenv.2021.150605] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Amphibians are particularly vulnerable to climate changes that are expected to cause habitat fragmentation and loss and, ultimately, local extirpations. However, little is known about how the interaction between climate change and fragmentation may impede the ability of amphibians to adapt to climate change. Here, we used the iconic mountain frog Quasipaa boulengeri as an indicator species to extrapolate climate-driven shifts in its habitat availability and connectivity in central and southern China according to the minimum and maximum representative concentration pathways. The models projected an average habitat loss of 36%-71% and the in situ and ex situ climate-change refugia to be 29%-64% and 5%-18% of the present-day suitable habitats, respectively. An increase in habitat fragmentation was reflected in a 51% decrease in core patch size, a 9% increase in the mean least-cost path (LCP) length, and a 19% increase in the cost-weighted distance. These climate-driven shifts varied spatially around the Sichuan Basin, with those in the southeast of the Basin being the most pronounced habitat and connectivity losses and those along the Basin being relatively optimistic. The effectiveness of refugia may only be maintained through a narrow passageway along the southern Sichuan Basin because of the presence of LCPs over time. Our results emphasize the need to understand how climate change and connectivity will jointly affect the distribution of mountain amphibians and to accordingly adopt conservation strategies. Further, our findings highlight the importance of identifying and preserving climate-change refugia and habitat connectivity for species persistence and conservation planning.
Collapse
Affiliation(s)
- Shengnan Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyi Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Sena MVA, Bantim RAM, Saraiva AAF, Sayão JM, Oliveira GR. Shell and long-bone histology, skeletochronology, and lifestyle of Araripemys barretoi (Testudines: Pleurodira), a side-necked turtle of the Lower Cretaceous from Brazil. AN ACAD BRAS CIENC 2021; 93:e20201606. [PMID: 34378648 DOI: 10.1590/0001-3765202120201606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/12/2021] [Indexed: 11/22/2022] Open
Abstract
In this study we provide a comprehensive investigation of the microanatomical and microstructural aspects of the carapace and limb bones of the Early Cretaceous side-necked turtle, Araripemys barretoi, from the Araripe Basin, Brazil. Inter-elemental histovariability reveals different secondary remodelling of the skeletal elements within the same individual. The vascularisation is scarce and mainly longitudinal, also it ceases towards the bone surface, forming an avascular parallel-fibred bone with closely spaced LAGs. These traits indicate a late ontogenetic stage and a slow growth rate for one of the two A. barretoi specimens. The high cortical thickness of the costal plate suggests an increase of the shell stiffness. The elevated relative bone wall thickness of the ulna compared to other limb bones indicates a case of local pachyosteosclerosis, possibly to improve body stability in the aquatic environment.
Collapse
Affiliation(s)
- Mariana Valéria A Sena
- Universidade Federal de Pernambuco, Programa de Pós-Graduação em Geociências (PPGEOC), Departamento de Geologia, Avenida Prof. Moraes Rego, 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil.,Centro Universitário da Vitória de Santo Antão, Loteamento São Vicente Ferrer, 71, Cajá, 55610-050 Vitória de Santo Antão, PE, Brazil
| | - Renan Alfredo M Bantim
- Universidade Regional do Cariri, Laboratório de Paleontologia da URCA, Rua Carolino Sucupira, s/n, Pimenta, 63105-000 Crato, CE, Brazil
| | - Antônio A F Saraiva
- Universidade Regional do Cariri, Laboratório de Paleontologia da URCA, Rua Carolino Sucupira, s/n, Pimenta, 63105-000 Crato, CE, Brazil
| | - Juliana M Sayão
- Universidade Federal do Rio de Janeiro, Laboratório de Paleobiologia e Paleogeografia Antártica, Museu Nacional, Quinta da Boa Vista s/n, São Cristóvão, 20940-040 Rio de Janeiro, RJ, Brazil
| | - Gustavo R Oliveira
- Universidade Federal Rural de Pernambuco, Laboratório de Paleontologia & Sistemática, Departamento de Biologia, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| |
Collapse
|
5
|
Cogălniceanu D, Stănescu F, Székely D, Topliceanu TS, Iosif R, Székely P. Age, size and body condition do not equally reflect population response to habitat change in the common spadefoot toad Pelobates fuscus. PeerJ 2021; 9:e11678. [PMID: 34316392 PMCID: PMC8286710 DOI: 10.7717/peerj.11678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
Urbanization impacts biodiversity both directly through physical expansion over land, and indirectly due to land use conversion and human behaviors associated with urban areas. We assessed the response of a common spadefoot toad population (Pelobates fuscus) to habitat loss and fragmentation resulting from urban development by studying changes in size, body condition and age parameters. We compared samples collected in the early 2000s (sample A) and later on during 2012-2014 (sample B). The terrestrial habitats in the study area were severely reduced and fragmented due to the expansion of the human settlement. We found no significant differences in the age parameters between the two sampling periods; the median lifespan shortened from 3.5 (sample A) to 3.0 years (sample B), while the other age parameters were similar in both samples. In contrast, snout-vent length, body mass and body condition experienced a significant decrease over time. Our results suggest that changes in body size and body condition, rather than age parameters, better reflect the response of the common spadefoot toad population to declining habitat quality. Therefore, body measurements can provide reliable estimates of the impact of habitat degradation in amphibian populations.
Collapse
Affiliation(s)
- Dan Cogălniceanu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Asociația Chelonia Romania, Bucharest, Romania
| | - Florina Stănescu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Black Sea Institute for Development and Security Studies, Ovidius University Constanța, Constanța, Romania.,CEDMOG-Center for Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanța, Constanța, Romania
| | - Diana Székely
- Asociația Chelonia Romania, Bucharest, Romania.,Departamento de Ciencias Biológicas y Agropecuarias, Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs Lab), Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Theodor-Sebastian Topliceanu
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Black Sea Institute for Development and Security Studies, Ovidius University Constanța, Constanța, Romania.,CEDMOG-Center for Morphological and Genetic Studies of Malignant Pathology, Ovidius University Constanța, Constanța, Romania
| | - Ruben Iosif
- Faculty of Natural and Agricultural Sciences, Ovidius University Constanța, Constanța, Romania.,Asociația Chelonia Romania, Bucharest, Romania
| | - Paul Székely
- Asociația Chelonia Romania, Bucharest, Romania.,Departamento de Ciencias Biológicas y Agropecuarias, Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs Lab), Universidad Técnica Particular de Loja, Loja, Ecuador
| |
Collapse
|
6
|
Liang D, Yang S, Pagani-Núñez E, He C, Liu Y, Goodale E, Liao WB, Hu J. How to Become a Generalist Species? Individual Niche Variation Across Habitat Transformation Gradients. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.597450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Species in transformed habitats, frequently labeled as environmental generalists, tend to show broader niches than species in natural habitats. However, how population niche expansion translates into changes in the niches of individual organisms remains unclear, particularly in the context of habitat transformation. Niche expansion could be a product of individuals having broader niches, greater distances among individuals’ niches, or a combination of both processes. This would challenge the traditional conceptions on niche dynamics, which emphasize the role played by individual specialization (IS). Here, using stable isotopes, we computed total niche width (TNW), its within- and between-individual components (WIC and BIC), and IS (the ratio WIC/TNW), in 13 populations of 6 bird species and 8 populations of 3 frog species in natural and transformed habitats. We confirmed that species had broader niche width in transformed than in natural habitats, yet population niche expansion across habitats was mainly a product of increased distance between individuals. Within each habitat type, increases in TNW were linked to increases in WIC for all habitat types, while relationships between TNW and BIC were found in transformed but not in natural habitats. Hence, both increased individual niche width and increased distance among individuals were apparent within habitats, particularly in transformed ones, where increases in WIC dominated. Neither across or within habitats was niche expansion associated with increasing IS. Therefore, our results overturn traditional conceptions associated with the niche variation hypothesis and illustrate that niche expansion is not invariably associated with increased IS, because the distance between individual’s niches (BIC) can increase, as well as the breadth of those niches (WIC).
Collapse
|
7
|
Huang Y, Wang X, Yang X, Jiang J, Hu J. Unveiling the roles of interspecific competition and local adaptation in phenotypic differentiation of parapatric frogs. Curr Zool 2020; 66:383-392. [PMID: 32617086 PMCID: PMC7319442 DOI: 10.1093/cz/zoaa001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
Understanding how ecological processes affect phenotypic evolution has been and continues to be an important goal of ecology and evolutionary biology. Interspecific competition for resources can be a selective force driving phenotypic differentiation that reduces competition among sympatric species (character divergence), enabling closely-related species to coexist. However, although patterns of character divergence are well documented in both empirical and theoretical researches, how local adaptation to abiotic environment affects trait evolution in the face of interspecific competition is less known. Here, we investigate how patterns in morphological traits of 2 parapatric frog species, Feirana quadranus and F. taihangnica, vary among allopatric and sympatric regions using range-wide data derived from extensive field surveys. Feirana quadranus was overall larger than F. taihangnica in body size (i.e., snout–vent length [SVL]), and the difference between SVL of both species in sympatry was larger than that in allopatry. From allopatry to sympatry, the 2 species diverged in foot and hand traits, but converged in eye size and interorbital span, even when we controlled for the effects of geographic gradients. Sympatric divergence in SVL, hand and foot traits is likely acting as a case of evolutionary shift caused by interspecific competition. In contrast, sympatric convergence of eye-related traits may derive at least partly from adaptation to local environments. These results imply the relative roles of interspecific competition and local adaptation in shaping phenotypic diversification. Our findings illustrate how traits evolve in parapatric species pair due to sympatric divergent and convergent evolution. It thus provides insights into understanding underlying evolutionary processes of parapatric species, that is, competition and local adaptation.
Collapse
Affiliation(s)
- Yan Huang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China
| | - Xiaoyi Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xin Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Junhua Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
8
|
Guo C, Gao S, Krzton A, Zhang L. Geographic body size variation of a tropical anuran: effects of water deficit and precipitation seasonality on Asian common toad from southern Asia. BMC Evol Biol 2019; 19:208. [PMID: 31706264 PMCID: PMC6842474 DOI: 10.1186/s12862-019-1531-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/18/2019] [Indexed: 11/12/2022] Open
Abstract
Background Two previous studies on interspecific body size variation of anurans found that the key drivers of variation are the species’ lifestyles and the environments that they live in. To examine whether those findings apply at the intraspecific level, we conducted a study of the Asian common toad (Duttaphrynus melanostictus), a terrestrial anuran distributed in tropical regions. The body size of toads from 15 locations, covering the majority of their geographic range, and local environmental data were summarized from published literature. We used a model selection process based on an information-theoretic approach to examine the relationship between toad body size and those environmental parameters. Results We found a positive correlation between the body size of the Asian common toad and the water deficit gradient, but no linkage between body size and temperature-related parameters. Furthermore, there was a positive correlation between the seasonality of precipitation and body size of females from different sampled populations. Conclusions As a terrestrial anuran, the Asian common toad should experience greater pressure from environmental fluctuations than aquatic species. It is mainly distributed in tropical regions where temperatures are generally warm and stable, but water availability fluctuates. Therefore, while thermal gradients are not strong enough to generate selection pressure on body size, the moisture gradient is strong enough to select for larger size in both males and females in dryer regions. Larger body size supports more efficient water conservation, a pattern in accordance with the prediction that lifestyles of different species and their local habitats determine the relationship between body size and environment. In addition, larger females occur in regions with greater seasonality in precipitation, which may happen because larger females can afford greater reproductive output in a limited reproductive season.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Zoology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.
| | - Shuai Gao
- Department of Zoology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| | - Ali Krzton
- Department of Research and Instruction, RBD Library, Auburn University, Auburn, AL, 36849, USA
| | - Long Zhang
- Department of Zoology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China
| |
Collapse
|