1
|
Zhang T, Yuan Y, Teng H, Wang D, Gu H. Exposure to Cyantraniliprole Adversely Impacts Fitness of Harmonia axyridis: Acute Toxicity and Sublethal Effects on Development, Fecundity and Antioxidant Responses. INSECTS 2024; 15:773. [PMID: 39452349 PMCID: PMC11508540 DOI: 10.3390/insects15100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Extensive utilization of pesticides and their persistent residues inadvertently pose threats to the effectiveness and fitness of biocontrol agents in agroecosystems. However, these ecological consequences are generally disregarded when executing integrated pest management strategies (IPM). Cyantraniliprole (CNAP) serves as a wide-spectrum diamide insecticide and its sublethal effects have been well characterized on multiple insect pests, whereas its impacts on beneficial natural enemies remain unfathomed. Herein we exposed Harmonia axyridis, a predacious generalist, to lethal and sublethal concentrations of CNAP via dipping treatment (egg stage) and topical applications (1st-instar stage + adult stage). The acute toxicity tests revealed that LC50 of CNAP were 90.11, 86.11 and 240.50 mg/L against embryos, 1st instar nymphs and female adults, respectively, with safety factors ranging from 1.14 to 5.34, suggesting its medium toxicity for H. axyridis and larval stage was the most susceptible. The embryonic, larval and pupal durations of coccinellids ecdysed from CNAP-treated eggs and 1st instars were all elongated under sublethal concentrations, of which LC30 triggered more pronounced and significant retardations relative to control. Besides, exposed coccinellids displayed substantially diminished pupal mass and pupation rate, most notably for insects molted from the 1st-instar stage upon CNAP sublethal treatments. With respect to reproductive performance, LC10 and LC30 of CNAP all significantly suppressed female fecundity, as evidenced by reduced vitellin content, a prolonged pre-oviposition period (POP), mitigated laid eggs and the egg hatching rate. Specifically, there existed positive correlations between vitellin level (Vn) and number of eggs deposited by per female, indicative of CNAP affecting fecundity by regulation of Vn. In addition, the antioxidant system was also profoundly disrupted by CNAP, with compromised POD activity at different concentrations over time and induced hormesis of SOD/CAT activities post LC10 exposure. Activities of SOD and TAC were enhanced to exert protective functions during the first 48 h, while defense collapsed at 72 h following LC30 treatments that depleted all enzymatic activities. We speculated that fitness trade-offs may occur between reproductive capacity and antioxidant defenses to sustain physiological homeostasis in response to CNAP stress. Collectively, this study evaluated the ecological risk of CNAP and unmasked its adverse implications for overall fitness of H. axyridis, which highlighted rational application of agrochemicals to conserve biocontrol agents when implementing IPM strategies for sustainable pest control.
Collapse
Affiliation(s)
- Tianshu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (T.Z.); (Y.Y.); (H.T.); (D.W.)
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Yongda Yuan
- Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (T.Z.); (Y.Y.); (H.T.); (D.W.)
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Haiyuan Teng
- Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (T.Z.); (Y.Y.); (H.T.); (D.W.)
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Dongsheng Wang
- Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (T.Z.); (Y.Y.); (H.T.); (D.W.)
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai 201415, China
| | - Haotian Gu
- Shanghai Key Laboratory of Protected Horticultural Technology, Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (T.Z.); (Y.Y.); (H.T.); (D.W.)
- Shanghai Engineering Research Centre of Low-Carbon Agriculture (SERCLA), Shanghai 201415, China
| |
Collapse
|
2
|
Malod K, Bierman A, Karsten M, Manrakhan A, Weldon CW, Terblanche JS. Evidence for transient deleterious thermal acclimation in field recapture rates of an invasive tropical species, Bactrocera dorsalis (Diptera: Tephritidae). INSECT SCIENCE 2024. [PMID: 39126165 DOI: 10.1111/1744-7917.13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Knowing how environmental conditions affect performance traits in pest insects is important to improve pest management strategies. It can be informative for monitoring, but also for control programs where insects are mass-reared, and field-released. Here, we investigated how adult thermal acclimation in sterile Bactrocera dorsalis affects dispersal and recapture rates in the field using a mark-release-recapture method. We also considered how current abiotic factors may affect recapture rates and interact with thermal history. We found that acclimation at 20 or 30 °C for 4 d prior to release reduced the number of recaptures in comparison with the 25 °C control group, but with no differences between groups in the willingness to disperse upon release. However, the deleterious effects of acclimation were only detectable in the first week following release, whereafter only the recent abiotic conditions explained recapture rates. In addition, we found that recent field conditions contributed more than thermal history to explain patterns of recaptures. The two most important variables affecting the number of recaptures were the maximum temperature and the average relative humidity experienced in the 24 h preceding trapping. Our results add to the handful of studies that have considered the effect of thermal acclimation on insect field performance, but notably lend support to the deleterious acclimation hypothesis among the various hypotheses that have been proposed. Finally, this study shows that there are specific abiotic conditions (cold/hot and dry) in which recaptures will be reduced, which may therefore bias estimates of wild population size.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Anandi Bierman
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Minette Karsten
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Aruna Manrakhan
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
- Citrus Research International, Mbombela, South Africa
| | - Christopher W Weldon
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
3
|
Cedden D, Güney G, Scholten S, Rostás M. Lethal and sublethal effects of orally delivered double-stranded RNA on the cabbage stem flea beetle, Psylliodes chrysocephala. PEST MANAGEMENT SCIENCE 2024; 80:2282-2293. [PMID: 37020381 DOI: 10.1002/ps.7494] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The cabbage stem flea beetle (Psylliodes chrysocephala) is one of the most important insect pests of oilseed rape (Brassica napus) in northern Europe. The emergence of insecticide-resistant populations and the ban on neonicotinoid seed treatments have made the management of this pest challenging and research is needed to develop alternative strategies such as RNA interference (RNAi). We investigated lethal and sublethal effects of orally delivered double-stranded (ds)RNAs targeting P. chrysocephala orthologs of Sec23 and vacuolar adenosine triphosphatase subunit G (VatpG), which are involved in endoplasmic reticulum-Golgi transport and organelle acidification, respectively. RESULTS Feeding bioassays on P. chrysocephala adults showed that the highest concentration (200 ng/leaf disk) of dsSec23 caused mortalities of 76% and 56% in pre-aestivating and post-aestivating beetles, respectively, while the same concentration of dsVatpG led to mortality rates of ~34% in both stages. Moreover, sublethal effects, such as decreased feeding rates and attenuated locomotion were observed. Small RNA sequencing and gene expression measurements following the delivery of dsRNAs demonstrated the generation of ~21 nucleotide-long small interfering RNAs and a systemic RNAi response in P. chrysocephala. CONCLUSION We demonstrate that P. chrysocephala is a promising candidate for developing RNAi-based pest management strategies. Further research is necessary to identify more effective target genes and to assess potential non-target effects. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Doga Cedden
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gözde Güney
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Stefan Scholten
- Division of Crop Plant Genetics, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Rai S, Singh A, Omkar O, Mishra G. Effect of larval thermal conditions on limb regeneration in a ladybird beetle, Cheilomenes sexmaculata. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:825-837. [PMID: 37465962 DOI: 10.1002/jez.2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
In view of global environmental change, ecological factors especially temperature, affect development of the poikilotherms like insects. Since ladybirds are at risk of injury under mass-rearing conditions, their ability to regenerate injured limbs is highly crucial for their survival. Therefore, the effect of limb regeneration in relation to temperature forms the basis of the present study. The immature stages of insects, being more vulnerable to the surrounding temperature, were considered to study the effect of the prior thermal experience of larvae on regeneration. We exposed the early larval stages of the ladybird beetle, Cheilomenes sexmaculata, to different temperature conditions pre- and postamputation. Exposure of immature stages to extreme temperatures did not affect the ability to regenerate and regeneration occurred at given temperature conditions. However, the regenerated legs were smaller in size across given temperatures as compared to unamputated legs. Body weights in amputated treatments showed no difference and remained unchanged across temperatures when compared to unamputated treatments. Postamputation developmental duration, equivalent to recovery time postlimb amputation, was found to be affected by larval thermal conditions. Recovery was faster in larval treatments exposed to higher temperatures. Thus, larval thermal conditions though did not affect the ability to regenerate lost limbs directly, it does modulate the time taken to regenerate.
Collapse
Affiliation(s)
- Shriza Rai
- Department of Zoology, Ladybird Research Laboratory, University of Lucknow, Lucknow, India
| | - Anupama Singh
- Department of Statistics, University of Lucknow, Lucknow, India
| | - Omkar Omkar
- Department of Zoology, University of Lucknow, Lucknow, India
| | - Geetanjali Mishra
- Department of Zoology, Ladybird Research Laboratory, University of Lucknow, Lucknow, India
| |
Collapse
|
5
|
Awde DN, Řeřicha M, Knapp M. Increased pupal temperature has reversible effects on thermal performance and irreversible effects on immune system and fecundity in adult ladybirds. Commun Biol 2023; 6:838. [PMID: 37573399 PMCID: PMC10423239 DOI: 10.1038/s42003-023-05196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023] Open
Abstract
The environmental conditions an organism encounters during development vary in their lasting impact on adult phenotypes. In the context of ongoing climate change, it is particularly relevant to understand how high developmental temperatures can impact adult traits, and whether these effects persist or diminish during adulthood. Here, we assessed the effects of pupal temperature (17 °C - normal temperature, 26 °C - increased temperature, or 35 °C - heat wave) on adult Harmonia axyridis thermal stress tolerance, immune function, starvation resistance, and fecundity. The temperature during pupation significantly affected all investigated traits in fresh adults. Heat acclimation decreased adult haemocyte concentration, cold tolerance, and total egg production, and had a positive effect on heat tolerance and starvation resistance. The negative effects of heat acclimation on cold tolerance diminished after seven days. In contrast, heat acclimation had a lasting positive effect on adult heat tolerance. Our results provide a broad assessment of the effects of developmental thermal acclimation on H. axyridis adult phenotypes. The relative plasticity of several adult traits after thermal acclimation may be consequential for the future geographic distribution and local performance of various insect species.
Collapse
Affiliation(s)
- David N Awde
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
- Department of Biology, Faculty of Science, Mount Saint Vincent University, Halifax, NS, Canada
| | - Michal Řeřicha
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Michal Knapp
- Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic.
| |
Collapse
|
6
|
Minnaar IA, Hui C, Clusella-Trullas S. Jack, master or both? The invasive ladybird Harmonia axyridis performs better than a native coccinellid despite divergent trait plasticity. NEOBIOTA 2022. [DOI: 10.3897/neobiota.77.91402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The plasticity of performance traits can promote the success of biological invasions and therefore, precisely estimating trait reaction norms can help to predict the establishment and persistence of introduced species in novel habitats. Most studies focus only on a reduced set of traits and rarely include trait variability that may be vital to predicting establishment success. Here, using a split-brood full-sib design, we acclimated the globally invasive ladybird Harmonia axyridis and a native co-occurring and competing species Cheilomenes lunata to cold, medium and warm temperature regimes, and measured critical thermal limits, life-history traits, and starvation resistance. We used the conceptual framework of “Jack, Master or both” to test predictions regarding performance differences of these two species. The native C. lunata had a higher thermal plasticity of starvation resistance and a higher upper thermal tolerance than H. axyridis. By contrast, H. axyridis had a higher performance than C. lunata for preoviposition period, fecundity and adult emergence from pupae. We combined trait responses, transport duration and propagule pressure to predict the size of the populations established in a novel site following cold, medium and warm scenarios. Although C. lunata initially had a higher performance than the invasive species during transport, more individuals of H. axyridis survived in all simulated environments due to the combined life-history responses, and in particular, higher fecundity. Despite an increased starvation mortality in the warm scenario, given a sufficient propagule size, H. axyridis successfully established. This study underscores how the combination and plasticity of multiple performance traits can strongly influence establishment potential of species introduced into novel environments.
Collapse
|
7
|
Pottier P, Burke S, Zhang RY, Noble DWA, Schwanz LE, Drobniak SM, Nakagawa S. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol Lett 2022; 25:2245-2268. [PMID: 36006770 DOI: 10.1111/ele.14083] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta-analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non-adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under-studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Rose Y Zhang
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Steyn VM, Mitchell KA, Nyamukondiwa C, Terblanche JS. Understanding costs and benefits of thermal plasticity for pest management: insights from the integration of laboratory, semi-field and field assessments of Ceratitis capitata (Diptera: Tephritidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:458-468. [PMID: 35535735 DOI: 10.1017/s0007485321000389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The relative costs and benefits of thermal acclimation for manipulating field performance of pest insects depend upon a number of factors including which traits are affected and how persistent any trait changes are in different environments. By assessing plastic trait responses of Ceratitis capitata (Mediterranean fruit fly) across three distinct operational environments (laboratory, semi-field, and field), we examined the influence of different thermal acclimation regimes (cool, intermediate [or handling control], and warm) on thermal tolerance traits (chill-coma recovery, heat-knockdown time, critical thermal minimum and critical thermal maximum) and flight performance (mark-release-recapture). Under laboratory conditions, thermal acclimation altered thermal limits in a relatively predictable manner and there was a generally positive effect across all traits assessed, although some traits responded more strongly. By contrast, dispersal-related performance yielded strongly contrasting results depending on the specific operational environment assessed. In semi-field conditions, warm- or cold-acclimated flies were recaptured more often than the control group at cooler ambient conditions suggesting an overall stimulatory influence of thermal variability on low-temperature dispersal. Under field conditions, a different pattern was identified: colder flies were recaptured more in warmer field conditions relative to other treatment groups. This study highlights the trait- and context-specific nature of how thermal acclimation influences traits of thermal performance and tolerance. Consequently, laboratory and semi-field assessments of dispersal may not provide results that extend into the field setting despite the apparent continuum of environmental complexity among them (laboratory < semi-field < field).
Collapse
Affiliation(s)
- Vernon M Steyn
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Katherine A Mitchell
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Casper Nyamukondiwa
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
9
|
Weldon CW, Terblanche JS, Bosua H, Malod K, Chown SL. Male Mediterranean fruit flies prefer warmer temperatures that improve sexual performance. J Therm Biol 2022; 108:103298. [DOI: 10.1016/j.jtherbio.2022.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
|
10
|
Pottier P, Burke S, Drobniak SM, Lagisz M, Nakagawa S. Sexual (in)equality? A meta‐analysis of sex differences in thermal acclimation capacity across ectotherms. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Patrice Pottier
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| | - Samantha Burke
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| | - Szymon M. Drobniak
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
- Institute of Environmental Sciences Jagiellonian University Kraków Poland
| | - Malgorzata Lagisz
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| | - Shinichi Nakagawa
- Ecology & Evolution Research Centre School of Biological, Earth and Environmental Sciences The University of New South Wales Sydney NSW Australia
| |
Collapse
|
11
|
Fan XL, Lin ZH, Scheffers BR. Physiological, developmental, and behavioral plasticity in response to thermal acclimation. J Therm Biol 2021; 97:102866. [PMID: 33863430 DOI: 10.1016/j.jtherbio.2021.102866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022]
Abstract
Organisms with complex ecologies and life-cycle processes may shift physiologically (acclimation in tolerance), developmentally, and/or behaviorally (thermoregulation) in response to changes in climate. As such, climate change may trigger multiple, interacting phenotypic responses, which underscores the nuances of characterizing a species capacity to adapt and respond to climate change. In this study, we use a model frog species, Bufo gargarizans, to examine how three phenotypes, thermal tolerance limits (critical thermal minimum, CTmin and critical thermal maximum, CTmax), ontogeny, and behavioral preferences in temperature (Tpref) respond to different levels of thermal exposure (i.e., acclimation ranging from 10 °C to 30 °C). Acclimation temperature had little effect on Tpref of tadpoles, yet behaviorally they showed strong signs of thermal selection towards an optimum. Both CTmin and CTmax increased with acclimation temperature with an approximate 10% increase in tolerance limits per 1 °C increase in exposure. Development and body size both responded to acclimation temperature, both of which also influenced lower but not upper thermal limits. Our study highlights the idiosyncrasies of estimating climate vulnerability, where multiple phenotypes can respond to shifts in temperature-a complexity that is especially apparent in species with complex life-cycles.
Collapse
Affiliation(s)
- Xiao L Fan
- Department of Ecology and Biological Resources, Lishui University, LS, 323000, China
| | - Zhi H Lin
- Department of Ecology and Biological Resources, Lishui University, LS, 323000, China
| | - Brett R Scheffers
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|