1
|
Li N, Zethoven M, McInerny S, Healey E, DeSilva D, Devereux L, Scott RJ, James PA, Campbell IG. Contribution of large genomic rearrangements in PALB2 to familial breast cancer: implications for genetic testing. J Med Genet 2023; 60:112-118. [PMID: 35396271 DOI: 10.1136/jmedgenet-2021-108399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/08/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND PALB2 is the most important contributor to familial breast cancer after BRCA1 and BRCA2. Large genomic rearrangements (LGRs) in BRCA1 and BRCA2 are routinely assessed in clinical testing and are a significant contributor to the yield of actionable findings. In contrast, the contribution of LGRs in PALB2 has not been systematically studied. METHODS We performed targeted sequencing and real-time qPCR validation to identify LGRs in PALB2 in 5770 unrelated patients with familial breast cancer and 5741 cancer-free control women from the same Australian population. RESULTS Seven large deletions ranging in size from 0.96 kbp to 18.07 kbp involving PALB2 were identified in seven cases, while no LGRs were identified in any of the controls. Six LGRs were considered pathogenic as they included one or more exons of PALB2 and disrupted the WD40 domain at the C terminal end of the PALB2 protein while one LGR only involved a partial region of intron 10 and was considered a variant of unknown significance. Altogether, pathogenic LGRs identified in this study accounted for 10.3% (6 of 58) of the pathogenic PALB2 variants detected among the 5770 families with familial breast cancer. CONCLUSIONS Our data show that a clinically important proportion of PALB2 pathogenic mutations in Australian patients with familial breast cancer are LGRs. Such observations have provided strong support for inclusion of PALB2 LGRs in routine clinical genetic testing.
Collapse
Affiliation(s)
- Na Li
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Magnus Zethoven
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Bioinformatics Core Facility, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simone McInerny
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Eliza Healey
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Dilanka DeSilva
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lisa Devereux
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia.,Lifepool, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia.,Division of Molecular Medicine, Pathology North, Newcastle, New South Wales, Australia.,Discipline of Medical Genetics, The University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ian G Campbell
- Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Hakkaart C, Pearson JF, Marquart L, Dennis J, Wiggins GAR, Barnes DR, Robinson BA, Mace PD, Aittomäki K, Andrulis IL, Arun BK, Azzollini J, Balmaña J, Barkardottir RB, Belhadj S, Berger L, Blok MJ, Boonen SE, Borde J, Bradbury AR, Brunet J, Buys SS, Caligo MA, Campbell I, Chung WK, Claes KBM, Collonge-Rame MA, Cook J, Cosgrove C, Couch FJ, Daly MB, Dandiker S, Davidson R, de la Hoya M, de Putter R, Delnatte C, Dhawan M, Diez O, Ding YC, Domchek SM, Donaldson A, Eason J, Easton DF, Ehrencrona H, Engel C, Evans DG, Faust U, Feliubadaló L, Fostira F, Friedman E, Frone M, Frost D, Garber J, Gayther SA, Gehrig A, Gesta P, Godwin AK, Goldgar DE, Greene MH, Hahnen E, Hake CR, Hamann U, Hansen TVO, Hauke J, Hentschel J, Herold N, Honisch E, Hulick PJ, Imyanitov EN, Isaacs C, Izatt L, Izquierdo A, Jakubowska A, James PA, Janavicius R, John EM, Joseph V, Karlan BY, Kemp Z, Kirk J, Konstantopoulou I, Koudijs M, Kwong A, Laitman Y, Lalloo F, Lasset C, Lautrup C, Lazaro C, Legrand C, Leslie G, Lesueur F, Mai PL, Manoukian S, Mari V, Martens JWM, McGuffog L, Mebirouk N, Meindl A, Miller A, Montagna M, Moserle L, Mouret-Fourme E, Musgrave H, Nambot S, Nathanson KL, Neuhausen SL, Nevanlinna H, Yie JNY, Nguyen-Dumont T, Nikitina-Zake L, Offit K, Olah E, Olopade OI, Osorio A, Ott CE, Park SK, Parsons MT, Pedersen IS, Peixoto A, Perez-Segura P, Peterlongo P, Pocza T, Radice P, Ramser J, Rantala J, Rodriguez GC, Rønlund K, Rosenberg EH, Rossing M, Schmutzler RK, Shah PD, Sharif S, Sharma P, Side LE, Simard J, Singer CF, Snape K, Steinemann D, Stoppa-Lyonnet D, Sutter C, Tan YY, Teixeira MR, Teo SH, Thomassen M, Thull DL, Tischkowitz M, Toland AE, Trainer AH, Tripathi V, Tung N, van Engelen K, van Rensburg EJ, Vega A, Viel A, Walker L, Weitzel JN, Wevers MR, Chenevix-Trench G, Spurdle AB, Antoniou AC, Walker LC. Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers. Commun Biol 2022; 5:1061. [PMID: 36203093 PMCID: PMC9537519 DOI: 10.1038/s42003-022-03978-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.
Collapse
Affiliation(s)
- Christopher Hakkaart
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - John F Pearson
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - George A R Wiggins
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Daniel R Barnes
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Bridget A Robinson
- Department of Medicine, University of Otago, Christchurch, New Zealand
- Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, Christchurch Hospital, Christchurch, New Zealand
| | - Peter D Mace
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kristiina Aittomäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Banu K Arun
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Judith Balmaña
- Hereditary cancer Genetics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Hospital Campus, Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rosa B Barkardottir
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
- BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Sami Belhadj
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lieke Berger
- Department of Clinical Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marinus J Blok
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Susanne E Boonen
- Department of Clinical Genetics, Odense University Hospital, Odence C, Denmark
| | - Julika Borde
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Angela R Bradbury
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), ONCOBELL-IDIBELL-IGTP, CIBERONC, Barcelona, Spain
| | - Saundra S Buys
- Department of Medicine, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Maria A Caligo
- SOD Genetica Molecolare, University Hospital, Pisa, Italy
| | - Ian Campbell
- Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY, USA
| | | | | | - Jackie Cook
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Casey Cosgrove
- Gynecologic Oncology, Translational Therapeutics, Department of Obstetrics and Gynecology, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Mary B Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sita Dandiker
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rosemarie Davidson
- Department of Clinical Genetics, Queen Elizabeth University Hospital, Glasgow, UK
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Robin de Putter
- Centre for Medical Genetics, Ghent University Hospital, Gent, Belgium
| | - Capucine Delnatte
- Oncogénétique, Institut de Cancérologie de l'Ouest siteRené Gauducheau, Saint Herblain, France
| | - Mallika Dhawan
- Cancer Genetics and Prevention Program, University of California San Francisco, San Francisco, CA, USA
| | - Orland Diez
- Hereditary cancer Genetics Group, Vall d'Hebron Institute of Oncology, Vall d'Hebron Hospital Campus, Barcelona, Spain
- Area of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Yuan Chun Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Susan M Domchek
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Alan Donaldson
- Clinical Genetics Department, St Michael's Hospital, Bristol, UK
| | - Jacqueline Eason
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Hans Ehrencrona
- Department of Clinical Genetics and Pathology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE - Leipzig Research Centre for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Ulrike Faust
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), ONCOBELL-IDIBELL-IGTP, CIBERONC, Barcelona, Spain
| | - Florentia Fostira
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Eitan Friedman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Megan Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Judy Garber
- Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Simon A Gayther
- Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Andrea Gehrig
- Department of Human Genetics, University Würzburg, Würzburg, Germany
| | - Paul Gesta
- Service Régional Oncogénétique Poitou-Charentes, CH Niort, Niort, France
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - David E Goldgar
- Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Eric Hahnen
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas V O Hansen
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jan Hauke
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Hentschel
- Institute of Human Genetics, University Hospital Leipzig, Leipzig, Germany
| | - Natalie Herold
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ellen Honisch
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter J Hulick
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- The University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | | | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Louise Izatt
- Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Angel Izquierdo
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), ONCOBELL-IDIBELL-IGTP, CIBERONC, Barcelona, Spain
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Paul A James
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Ramunas Janavicius
- Faculty of Medicine, Institute of Biomedical Sciences, Dept. Of Human and Medical Genetics, Vilnius University, Vilnius, Lithuania
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Esther M John
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Oncology, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Vijai Joseph
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Beth Y Karlan
- David Geffen School of Medicine, Department of Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Zoe Kemp
- Breast and Cancer Genetics Units, The Royal Marsden NHS Foundation Trust, London, UK
| | - Judy Kirk
- Familial Cancer Service, Weatmead Hospital, Wentworthville, New South Wales, Australia
| | - Irene Konstantopoulou
- Molecular Diagnostics Laboratory, INRASTES, National Centre for Scientific Research 'Demokritos', Athens, Greece
| | - Marco Koudijs
- Department of Medical Genetics, University Medical Center, Utrecht, The Netherlands
| | - Ava Kwong
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong, China
- Department of Surgery, The University of Hong Kong, Hong Kong, China
- Department of Surgery and Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong, China
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Fiona Lalloo
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Christine Lasset
- Unité de Prévention et d'Epidémiologie Génétique, Centre Léon Bérard, Lyon, France
| | - Charlotte Lautrup
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark
| | - Conxi Lazaro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), ONCOBELL-IDIBELL-IGTP, CIBERONC, Barcelona, Spain
| | | | - Goska Leslie
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Fabienne Lesueur
- Genetic Epidemiology of Cancer team, Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Phuong L Mai
- Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Véronique Mari
- Département d'Hématologie-Oncologie Médicale, Centre Antoine Lacassagne, Nice, France
| | - John W M Martens
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Noura Mebirouk
- Genetic Epidemiology of Cancer team, Inserm U900, Paris, France
- Institut Curie, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - Alfons Meindl
- Department of Gynecology and Obstetrics, University of Munich, Campus Großhadern, Munich, Germany
| | - Austin Miller
- NRG Oncology, Statistics and Data Management Center, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Lidia Moserle
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | - Hannah Musgrave
- Department of Clinical Genetics, Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
| | - Sophie Nambot
- Unité d'oncogénétique, Centre de Lutte Contre le Cancer, Centre Georges-François Leclerc, Dijon, France
| | - Katherine L Nathanson
- Basser Center for BRCA, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Joanne Ngeow Yuen Yie
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Cancer Genetics Service, National Cancer Centre, Singapore, Singapore
| | - Tu Nguyen-Dumont
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Kenneth Offit
- Clinical Genetics Research Lab, Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Genetics Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Edith Olah
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | | | - Ana Osorio
- Familial Cancer Clinical Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO) and Spanish Network on Rare Diseases (CIBERER), Madrid, Spain
| | - Claus-Eric Ott
- Institute of Medical Genetics and Human Genetics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Inge Sokilde Pedersen
- Molecular Diagnostics, Aalborg University Hospital, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ana Peixoto
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - Pedro Perez-Segura
- Molecular Oncology Laboratory, CIBERONC, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), Madrid, Spain
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM ETS - the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Timea Pocza
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy
| | - Juliane Ramser
- Division of Gynaecology and Obstetrics, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | | | - Gustavo C Rodriguez
- Division of Gynecologic Oncology, NorthShore University HealthSystem, University of Chicago, Evanston, IL, USA
| | - Karina Rønlund
- Department of Clinical Genetics, University Hospital of Southern Denmark, Vejle Hospital, Vejle, Denmark
| | - Efraim H Rosenberg
- Department of Pathology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rita K Schmutzler
- Center for Integrated Oncology (CIO), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Payal D Shah
- Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Saba Sharif
- West Midlands Regional Genetics Service, Birmingham Women's Hospital Healthcare NHS Trust, Birmingham, UK
| | - Priyanka Sharma
- Department of Internal Medicine, Division of Medical Oncology, University of Kansas Medical Center, Westwood, KS, USA
| | | | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, QC, Canada
| | - Christian F Singer
- Dept of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Katie Snape
- Medical Genetics Unit, St George's, University of London, London, UK
| | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Dominique Stoppa-Lyonnet
- Service de Génétique, Institut Curie, Paris, France
- Department of Tumour Biology, INSERM U830, Paris, France
- Université Paris Cité, Paris, France
| | - Christian Sutter
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Yen Yen Tan
- Dept of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Soo Hwang Teo
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odence C, Denmark
| | - Darcy L Thull
- Department of Medicine, Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marc Tischkowitz
- Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montréal, QC, Canada
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Amanda E Toland
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Alison H Trainer
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Department of medicine, University Of Melbourne, Melbourne, Victoria, Australia
| | - Vishakha Tripathi
- South East Thames Regional Genetics Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Nadine Tung
- Department of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Klaartje van Engelen
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Ana Vega
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Fundación Pública Galega de Medicina Xenómica, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain
| | - Alessandra Viel
- Division of Functional onco-genomics and genetics, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Lisa Walker
- Oxford Regional Genetics Service, Churchill Hospital, Oxford, UK
| | - Jeffrey N Weitzel
- Latin American School of Oncology, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
3
|
Gallardo-Rincón D, Montes-Servín E, Alamilla-García G, Montes-Servín E, Bahena-González A, Cetina-Pérez L, Morales Vásquez F, Cano-Blanco C, Coronel-Martínez J, González-Ibarra E, Espinosa-Romero R, María Alvarez-Gómez R, Pedroza-Torres A, Castro-Eguiluz D. Clinical Benefits of Olaparib in Mexican Ovarian Cancer Patients With Founder Mutation BRCA1-Del ex9-12. Front Genet 2022; 13:863956. [PMID: 35734436 PMCID: PMC9207274 DOI: 10.3389/fgene.2022.863956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Ovarian cancer (OC) is gynecologic cancer with the highest mortality rate. It is estimated that 13–17% of ovarian cancers are due to heritable mutations in BRCA1 and BRCA2. The BRCA1 (BRCA1-Del ex9-12) Mexican founder mutation is responsible for 28–35% of the cases with ovarian cancer. The aim was to describe the PFS of OC patients treated with olaparib, emphasizing patients carrying the Mexican founder mutation (BRCA1-Del ex9-12). Methods: In this observational study, of 107 patients with BRCAm, 35 patients were treated with olaparib from November 2016 to May 2021 at the Ovarian Cancer Program (COE) of Mexico; patient information was extracted from electronic medical records. Results: Of 311 patients, 107 (34.4%) were with BRCAm; 71.9% (77/107) were with BRCA1, of which 27.3% (21/77) were with BRCA1-Del ex9-12, and 28.1% (30/107) were with BRCA2 mutations. Only 35 patients received olaparib treatment, and the median follow-up was 12.87 months. The PFS of BRCA1-Del ex9-12 was NR (non-reach); however, 73% of the patients received the treatment at 36 vs. 11.59 months (95% CI; 10.43–12.75) in patients with other BRCAm (p = 0.008). Almost 50% of patients required dose reduction due to toxicity; the most frequent adverse events were hematological in 76.5% and gastrointestinal in 4%. Conclusion: Mexican OC BRCA1-Del ex9-12 patients treated with olaparib had a significant increase in PFS regardless of the line of treatment compared to other mutations in BRCA.
Collapse
Affiliation(s)
- Dolores Gallardo-Rincón
- Ovarian and Endometrial Cancer Program (COE), Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Department of Medical Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- *Correspondence: Dolores Gallardo-Rincón,
| | - Edgar Montes-Servín
- Ovarian and Endometrial Cancer Program (COE), Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Gabriela Alamilla-García
- Ovarian and Endometrial Cancer Program (COE), Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Department of Medical Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Elizabeth Montes-Servín
- Ovarian and Endometrial Cancer Program (COE), Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Antonio Bahena-González
- Ovarian and Endometrial Cancer Program (COE), Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Department of Medical Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Lucely Cetina-Pérez
- Department of Clinical Research and Medical Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Cervical Cancer Program (Micaela), Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Flavia Morales Vásquez
- Department of Medical Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Claudia Cano-Blanco
- Department of Medical Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Jaime Coronel-Martínez
- Department of Medical Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Ernesto González-Ibarra
- Ovarian and Endometrial Cancer Program (COE), Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Raquel Espinosa-Romero
- Ovarian and Endometrial Cancer Program (COE), Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Department of Medical Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Rosa María Alvarez-Gómez
- Department of Clinical Research and Medical Oncology, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Hereditary Cancer Clinic, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Abraham Pedroza-Torres
- Hereditary Cancer Clinic, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Catedrático CONACYT, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Denisse Castro-Eguiluz
- Cervical Cancer Program (Micaela), Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Catedrático CONACYT, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
4
|
Leite Rocha D, Ashton-Prolla P, Rosset C. Reviewing the occurrence of large genomic rearrangements in patients with inherited cancer predisposing syndromes: importance of a comprehensive molecular diagnosis. Expert Rev Mol Diagn 2022; 22:319-346. [PMID: 35234551 DOI: 10.1080/14737159.2022.2049247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hereditary cancer predisposition syndromes are caused by germline pathogenic or likely pathogenic variants in cancer predisposition genes (CPG). The majority of pathogenic variants in CPGs are point mutations, but large gene rearrangements (LGRs) are present in several CPGs. LGRs can be much more difficult to characterize and perhaps they may have been neglected in molecular diagnoses. AREAS COVERED We aimed to evaluate the frequencies of germline LGRs in studies conducted in different populations worldwide through a qualitative systematic review based on an online literature research in PubMed. Two reviewers independently extracted data from published studies between 2009 and 2020. In total, 126 studies from 37 countries and 5 continents were included in the analysis. The number of studies in different continents ranged from 3 to 48 and for several countries there was an absolute lack of information. Asia and Europe represented most of the studies, and LGR frequencies varied from 3.04 to 15.06% in different continents. MLPA was one of the methods of choice in most studies (93%). EXPERT OPINION The LGR frequencies found in this review reinforce the need for comprehensive molecular testing regardless of the population of origin and should be considered by genetic counseling providers.
Collapse
Affiliation(s)
- Débora Leite Rocha
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patrícia Ashton-Prolla
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil.,Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil. Av. Bento Gonçalves, 9500 - Prédio 43312 M, CEP: 91501-970, Caixa Postal 1505, Porto Alegre, Rio Grande do Sul, Brazil.,Serviço de Genética Médica, HCPA, Rio Grande do Sul, Brazil. Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clévia Rosset
- Laboratório de Medicina Genômica, Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre (HCPA), Rua Ramiro Barcelos, 2350, CEP: 90035-930, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Villarreal-Garza C, Ferrigno AS, Aranda-Gutierrez A, Frankel PH, Ruel NH, Fonseca A, Narod S, Chavarri-Guerra Y, Sifuentes E, Magallanes-Hoyos MC, Herzog J, Castillo D, Alvarez-Gomez RM, Mohar-Betancourt A, Weitzel JN. Influence of germline BRCA genotype on the survival of patients with triple-negative breast cancer. CANCER RESEARCH COMMUNICATIONS 2021; 1:140-147. [PMID: 35875314 PMCID: PMC9307147 DOI: 10.1158/2767-9764.crc-21-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The presence of BRCA pathogenic variants (PVs) in triple-negative breast cancer (TNBC) is associated with a distinctive genomic profile that makes the tumor particularly susceptible to DNA-damaging treatments. However, patients with BRCA PVs can develop treatment resistance through the appearance of reversion mutations and restored BRCA expression. As copy-number variants (CNV) could be less susceptible to reversion mutations than point mutations, we hypothesize that carriers of BRCA CNVs may have improved survival after treatment compared to carriers of other BRCA PVs or BRCA wild-type. Women diagnosed with stage I-III TNBC at ≤50 years at a cancer center in Mexico City were screened for BRCA PVs using a recurrent PV assay (HISPANEL; 77% sensitivity). The recurrence-free (RFS) and overall survival (OS) were compared according to mutational status. Among 180 women, 17 (9%) were carriers of BRCA1 ex9-12del CNV and 26 (14%) of other BRCA PVs. RFS at ten years for the whole cohort was 79.2% (95% CI 72.3-84.6%), with no significant differences according to mutational status. 10-year OS for the entire cohort was 85.3% (95%CI: 78.7-90.0%), with BRCA CNV carriers demonstrating numerically superior OS rates other PV carriers and non-carriers (100% vs. 78.6% and 84.7%; log-rank p=0.037 and p=0.051, respectively). This study suggests that BRCA1 ex9-12del CNV carriers with TNBC may have a better OS, and supports the hypothesis that the genotype of BRCA PVs may influence survival by limiting treatment resistance mediated by reversion mutations among CNV carriers.
Collapse
Affiliation(s)
- Cynthia Villarreal-Garza
- Breast Cancer Center, Hospital Zambrano Hellion TecSalud, Tecnologico de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico.,Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Ana S. Ferrigno
- Breast Cancer Center, Hospital Zambrano Hellion TecSalud, Tecnologico de Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | | | | | | | - Alan Fonseca
- Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Steven Narod
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Yanin Chavarri-Guerra
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | | | | | - Jeffrey N. Weitzel
- Latin American School of Oncology, Sierra Madre, California.,Corresponding Author: Jeffrey N. Weitzel, Latin American School of Oncology, 578 Acacia Street, Sierra Madre, CA 91024. Phone: 626-233-9713; E-mail:
| |
Collapse
|
6
|
Chandrasekaran D, Sobocan M, Blyuss O, Miller RE, Evans O, Crusz SM, Mills-Baldock T, Sun L, Hammond RFL, Gaba F, Jenkins LA, Ahmed M, Kumar A, Jeyarajah A, Lawrence AC, Brockbank E, Phadnis S, Quigley M, El Khouly F, Wuntakal R, Faruqi A, Trevisan G, Casey L, Burghel GJ, Schlecht H, Bulman M, Smith P, Bowers NL, Legood R, Lockley M, Wallace A, Singh N, Evans DG, Manchanda R. Implementation of Multigene Germline and Parallel Somatic Genetic Testing in Epithelial Ovarian Cancer: SIGNPOST Study. Cancers (Basel) 2021; 13:cancers13174344. [PMID: 34503154 PMCID: PMC8431198 DOI: 10.3390/cancers13174344] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
We present findings of a cancer multidisciplinary-team (MDT) coordinated mainstreaming pathway of unselected 5-panel germline BRCA1/BRCA2/RAD51C/RAD51D/BRIP1 and parallel somatic BRCA1/BRCA2 testing in all women with epithelial-OC and highlight the discordance between germline and somatic testing strategies across two cancer centres. Patients were counselled and consented by a cancer MDT member. The uptake of parallel multi-gene germline and somatic testing was 97.7%. Counselling by clinical-nurse-specialist more frequently needed >1 consultation (53.6% (30/56)) compared to a medical (15.0% (21/137)) or surgical oncologist (15.3% (17/110)) (p < 0.001). The median age was 54 (IQR = 51-62) years in germline pathogenic-variant (PV) versus 61 (IQR = 51-71) in BRCA wild-type (p = 0.001). There was no significant difference in distribution of PVs by ethnicity, stage, surgery timing or resection status. A total of 15.5% germline and 7.8% somatic BRCA1/BRCA2 PVs were identified. A total of 2.3% patients had RAD51C/RAD51D/BRIP1 PVs. A total of 11% germline PVs were large-genomic-rearrangements and missed by somatic testing. A total of 20% germline PVs are missed by somatic first BRCA-testing approach and 55.6% germline PVs missed by family history ascertainment. The somatic testing failure rate is higher (23%) for patients undergoing diagnostic biopsies. Our findings favour a prospective parallel somatic and germline panel testing approach as a clinically efficient strategy to maximise variant identification. UK Genomics test-directory criteria should be expanded to include a panel of OC genes.
Collapse
Affiliation(s)
- Dhivya Chandrasekaran
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (D.C.); (M.S.); (O.E.); (L.S.); (F.G.)
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
| | - Monika Sobocan
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (D.C.); (M.S.); (O.E.); (L.S.); (F.G.)
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
- Divison for Gynaecology and Perinatology, University Medical Centre Maribor, 2000 Maribor, Slovenia
| | - Oleg Blyuss
- School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK;
- Department of Paediatrics and Paediatric Infectious Diseases, Sechenov First Moscow State Medical University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Rowan E. Miller
- Department of Medical Oncology, Barts Health NHS Trust, London EC1A 7BE, UK; (R.E.M.); (S.M.C.)
| | - Olivia Evans
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (D.C.); (M.S.); (O.E.); (L.S.); (F.G.)
| | - Shanthini M. Crusz
- Department of Medical Oncology, Barts Health NHS Trust, London EC1A 7BE, UK; (R.E.M.); (S.M.C.)
| | - Tina Mills-Baldock
- Department of Medical Oncology, Barking, Havering & Redbridge University Hospitals, Essex RM7 0AG, UK; (T.M.-B.); (M.Q.); (F.E.K.)
| | - Li Sun
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (D.C.); (M.S.); (O.E.); (L.S.); (F.G.)
- Department of Health Services Research, Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK;
| | - Rory F. L. Hammond
- Department of Pathology, Barts Health NHS Trust, London E1 1FR, UK; (R.F.L.H.); (A.F.); (G.T.); (L.C.); (N.S.)
| | - Faiza Gaba
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (D.C.); (M.S.); (O.E.); (L.S.); (F.G.)
| | - Lucy A. Jenkins
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London WC1N 3JH, UK; (L.A.J.); (M.A.); (A.K.)
| | - Munaza Ahmed
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London WC1N 3JH, UK; (L.A.J.); (M.A.); (A.K.)
| | - Ajith Kumar
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London WC1N 3JH, UK; (L.A.J.); (M.A.); (A.K.)
| | - Arjun Jeyarajah
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
| | - Alexandra C. Lawrence
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
| | - Elly Brockbank
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
| | - Saurabh Phadnis
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
| | - Mary Quigley
- Department of Medical Oncology, Barking, Havering & Redbridge University Hospitals, Essex RM7 0AG, UK; (T.M.-B.); (M.Q.); (F.E.K.)
| | - Fatima El Khouly
- Department of Medical Oncology, Barking, Havering & Redbridge University Hospitals, Essex RM7 0AG, UK; (T.M.-B.); (M.Q.); (F.E.K.)
| | - Rekha Wuntakal
- Department of Gynaecology, Barking, Havering & Redbridge University Hospitals, Essex RM7 0AG, UK;
| | - Asma Faruqi
- Department of Pathology, Barts Health NHS Trust, London E1 1FR, UK; (R.F.L.H.); (A.F.); (G.T.); (L.C.); (N.S.)
| | - Giorgia Trevisan
- Department of Pathology, Barts Health NHS Trust, London E1 1FR, UK; (R.F.L.H.); (A.F.); (G.T.); (L.C.); (N.S.)
| | - Laura Casey
- Department of Pathology, Barts Health NHS Trust, London E1 1FR, UK; (R.F.L.H.); (A.F.); (G.T.); (L.C.); (N.S.)
| | - George J. Burghel
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Helene Schlecht
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Michael Bulman
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Philip Smith
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Naomi L. Bowers
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Rosa Legood
- Department of Health Services Research, Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK;
| | - Michelle Lockley
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK;
| | - Andrew Wallace
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Naveena Singh
- Department of Pathology, Barts Health NHS Trust, London E1 1FR, UK; (R.F.L.H.); (A.F.); (G.T.); (L.C.); (N.S.)
| | - D. Gareth Evans
- Manchester Centre for Genomic Medicine, Saint Marys Hospital, Manchester M13 9WL, UK; (G.J.B.); (H.S.); (M.B.); (P.S.); (N.L.B.); (A.W.); (D.G.E.)
| | - Ranjit Manchanda
- Wolfson Institute of Population Health, Barts CRUK Cancer Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK; (D.C.); (M.S.); (O.E.); (L.S.); (F.G.)
- Department of Gynaecological Oncology, Barts Health NHS Trust, London EC1 1BB, UK; (A.J.); (A.C.L.); (E.B.); (S.P.)
- Department of Health Services Research, Faculty of Public Health & Policy, London School of Hygiene & Tropical Medicine, London WC1H 9SH, UK;
- Correspondence:
| |
Collapse
|
7
|
Bennett S, Alexander E, Fraser H, Bowers N, Wallace A, Woodward ER, Lalloo F, Quinn AM, Huang S, Schlecht H, Evans DG. Germline FFPE inherited cancer panel testing in deceased family members: implications for clinical management of unaffected relatives. Eur J Hum Genet 2021; 29:861-871. [PMID: 33654310 PMCID: PMC8110779 DOI: 10.1038/s41431-021-00817-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/07/2021] [Accepted: 01/23/2021] [Indexed: 01/29/2023] Open
Abstract
Where previously, germline genetic testing in deceased affected relatives was not possible due to the absence of lymphocytic DNA, the North-West-Genomic-Laboratory Hub (NWGLH) has developed and validated next-generation sequencing based gene panels utilising formalin-fixed-paraffin-embedded (FFPE) tissue DNA from deceased individuals. This technology has been utilised in the clinical setting for the management of unaffected relatives seen in the Clinical Genetics Service (CGS). Here we assess the clinical impact. At the time of data collection, the NWGLH had analysed 180 FFPE tissue samples from deceased affected individuals: 134 from breast and/or ovarian cancer cases for germline variants in the BRCA1/BRCA2 genes and 46 from colorectal, gastric, ovarian and endometrial cancer cases for germline variants in a panel of 13 genes implicated in inherited colorectal cancer and gastric cancer conditions. Successful analysis was achieved in 140/180 cases (78%). In total, 29 germline pathogenic/likely pathogenic variants were identified in autosomal dominant cancer predisposition genes where the gene was pertinent to the cancer family history (including BRCA1/BRCA2, the mismatch-repair genes and APC). Of the 180 cases, the impact of the result on clinical management of unaffected relatives was known in 143 cases. Of these, the results in 54 cases (38%) directly impacted the clinical management of relatives seen by the CGS. This included changes to risk assessments, screening recommendations and the availability of predictive genetic testing to unaffected relatives. Our data demonstrate how FFPE testing in deceased relatives is an accurate and informative tool in the clinical management of patients referred to the CGS.
Collapse
Affiliation(s)
- Sarah Bennett
- Clinical Genetics Service, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Elizabeth Alexander
- Clinical Genetics Service, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Harry Fraser
- Northern Regional Genetic Service, Genetics Health Service New Zealand, Auckland City Hospital, Auckland, New Zealand
| | - Naomi Bowers
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Andrew Wallace
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Emma R. Woodward
- Clinical Genetics Service, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK ,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Health innovation Manchester, Manchester, UK
| | - Fiona Lalloo
- Clinical Genetics Service, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Anne Marie Quinn
- Department of Anatomic Pathology, University Hospital Galway, Galway, Ireland
| | - Shuwen Huang
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Helene Schlecht
- North West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - D. Gareth Evans
- Clinical Genetics Service, Manchester Centre for Genomic Medicine, St Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK ,Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Health innovation Manchester, Manchester, UK
| |
Collapse
|
8
|
Pócza T, Grolmusz VK, Papp J, Butz H, Patócs A, Bozsik A. Germline Structural Variations in Cancer Predisposition Genes. Front Genet 2021; 12:634217. [PMID: 33936164 PMCID: PMC8081352 DOI: 10.3389/fgene.2021.634217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
In addition to single nucleotide variations and small-scale indels, structural variations (SVs) also contribute to the genetic diversity of the genome. SVs, such as deletions, duplications, amplifications, or inversions may also affect coding regions of cancer-predisposing genes. These rearrangements may abrogate the open reading frame of these genes or adversely affect their expression and may thus act as germline mutations in hereditary cancer syndromes. With the capacity of disrupting the function of tumor suppressors, structural variations confer an increased risk of cancer and account for a remarkable fraction of heritability. The development of sequencing techniques enables the discovery of a constantly growing number of SVs of various types in cancer predisposition genes (CPGs). Here, we provide a comprehensive review of the landscape of germline SV types, detection methods, pathomechanisms, and frequency in CPGs, focusing on the two most common cancer syndromes: hereditary breast- and ovarian cancer and gastrointestinal cancers. Current knowledge about the possible molecular mechanisms driving to SVs is also summarized.
Collapse
Affiliation(s)
- Tímea Pócza
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Vince Kornél Grolmusz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - János Papp
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| |
Collapse
|
9
|
HER2-positive breast cancer in a germline BRCA1 gene large deletion carrier. Int Cancer Conf J 2021; 10:181-185. [PMID: 34221828 DOI: 10.1007/s13691-021-00481-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/27/2021] [Indexed: 12/14/2022] Open
Abstract
A majority of breast cancer (BC) molecular subtype in BRCA1 variants carriers is triple-negative type. In contrast, human epidermal growth factor 2 (HER2)-positive BC among carriers of BRCA1 variants is rarely reported. A 42-year-old woman who previously received adjuvant endocrine therapy against left BC developed a left BC relapse and a right new primary BC. Her mother had BC and ovary cancer, and her cousin had BC. Genetic testing revealed a pathogenic large deletion of exons 1-8 in BRCA1. She was diagnosed with hereditary breast and ovary cancer and underwent bilateral mastectomy. The molecular subtypes of her right and left primary BC were HER2-enriched type and luminal-HER2 type, respectively. After completion of adjuvant therapy for right BC, risk-reducing salpingo-oophorectomy (RRSO) is planned. The present case makes us consider the frequency of BRCA1 large rearrangements in Japanese, the association between HER2 amplification and BRCA1 variants, and the optimal timing of RRSO in patients receiving adjuvant therapy for BC.
Collapse
|
10
|
Li N, McInerny S, Zethoven M, Cheasley D, Lim BWX, Rowley SM, Devereux L, Grewal N, Ahmadloo S, Byrne D, Lee JEA, Li J, Fox SB, John T, Antill Y, Gorringe KL, James PA, Campbell IG. Combined Tumor Sequencing and Case-Control Analyses of RAD51C in Breast Cancer. J Natl Cancer Inst 2020; 111:1332-1338. [PMID: 30949688 DOI: 10.1093/jnci/djz045] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/07/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Loss-of-function variants in RAD51C are associated with familial ovarian cancer, but its role in hereditary breast cancer remains unclear. The aim of this study was to couple breast tumor sequencing with case-control data to clarify the contribution of RAD51C to hereditary breast cancer. METHODS RAD51C was sequenced in 3080 breast cancer index cases that were negative in BRCA1/2 clinical tests and 4840 population-matched cancer-free controls. Pedigree and pathology data were analyzed. Nine breast cancers and one ovarian cancer from RAD51C variant carriers were sequenced to identify biallelic inactivation of RAD51C, copy number variation, mutational signatures, and the spectrum of somatic mutations in breast cancer driver genes. The promoter of RAD51C was analyzed for DNA methylation. RESULTS A statistically significant excess of loss-of-function variants was identified in 3080 cases (0.4%) compared with 2 among 4840 controls (0.04%; odds ratio = 8.67, 95% confidence interval = 1.89 to 80.52, P< .001), with more than half of the carriers having no personal or family history of ovarian cancer. In addition, the association was highly statistically significant among cases with estrogen-negative (P <. 001) or triple-negative cancer (P < .001), but not in estrogen-positive cases. Tumor sequencing from carriers confirmed bi-allelic inactivation in all the triple-negative cases and was associated with high homologous recombination deficiency scores and mutational signature 3 indicating homologous recombination repair deficiency. CONCLUSIONS This study provides evidence that germline loss-of-function variants of RAD51C are associated with hereditary breast cancer, particularly triple-negative type. RAD51C-null breast cancers possess similar genomic and clinical features to BRCA1-null cancers and may also be vulnerable to DNA double-strand break inducing chemotherapies and poly ADP-ribose polymerase inhibitors.
Collapse
|
11
|
Fragoso-Ontiveros V, Velázquez-Aragón JA, Nuñez-Martínez PM, de la Luz Mejía-Aguayo M, Vidal-Millán S, Pedroza-Torres A, Sánchez-Contreras Y, Ramírez-Otero MA, Muñiz-Mendoza R, Domínguez-Ortíz J, Wegman-Ostrosky T, Bargalló-Rocha JE, Gallardo-Rincón D, Reynoso-Noveron N, Arriaga-Canon C, Meneses-García A, Herrera-Montalvo LA, Alvarez-Gomez RM. Mexican BRCA1 founder mutation: Shortening the gap in genetic assessment for hereditary breast and ovarian cancer patients. PLoS One 2019; 14:e0222709. [PMID: 31545835 PMCID: PMC6756553 DOI: 10.1371/journal.pone.0222709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022] Open
Abstract
The deletion of exons 9 to 12 of BRCA1 (9-12 del BRCA1) is considered a founder mutation in the Mexican population. We evaluate the usefulness of the target detection of 9-12 del BRCA1 as the first molecular diagnostic strategy in patients with Hereditary Breast and Ovarian Cancer (HBOC). We performed the genetic assessment of 637 patients with suspected HBOC. The region corresponding to the breakpoints for the 9-12 del BRCA1 was amplified by polymerase chain reaction (PCR). An analysis of the clinical data of the carriers and non-carriers was done, searching for characteristics that correlated with the deletion. The 9-12 del BRCA1 was detected in 5% of patients with suspected HBOC (30/637). In patients diagnosed with ovarian cancer, 13 of 30 were 9-12 del BRCA1 carriers, which represents 43%. We found a significant association between the 9-12 del BRCA1 carriers with triple negative breast cancer and high-grade papillary serous ovarian cancer. We concluded that the detection of the 9-12 del BRCA1 is useful as a first molecular diagnostic strategy in the Mexican population. In particular, it shortens the gap in genetic assessment in patients with triple negative breast cancer and ovarian cancer.
Collapse
|
12
|
Rashid MU, Muhammad N, Naeemi H, Khan FA, Hassan M, Faisal S, Gull S, Amin A, Loya A, Hamann U. Spectrum and prevalence of BRCA1/2 germline mutations in Pakistani breast cancer patients: results from a large comprehensive study. Hered Cancer Clin Pract 2019; 17:27. [PMID: 31528241 PMCID: PMC6737632 DOI: 10.1186/s13053-019-0125-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/02/2019] [Indexed: 11/10/2022] Open
Abstract
Background Pathogenic germline mutations in BRCA1 and BRCA2 (BRCA1/2) account for the majority of hereditary breast and/or ovarian cancers worldwide. To refine the spectrum of BRCA1/2 mutations and to accurately estimate the prevalence of mutation in the Pakistani population, we studied 539 breast cancer patients selected for family history and age of diagnosis. Methods Comprehensive screening for BRCA1/2 germline mutations was performed using state-of-the-art technologies. Results A total of 133 deleterious mutations were identified in 539 families (24.7%), comprising 110 in BRCA1 and 23 in BRCA2. The prevalence of BRCA1/2 small-range mutations and large genomic rearrangements was 55.4% (36/65) for families with breast and ovarian cancer, 27.4% (67/244) for families with two or more cases of breast cancer, 18.5% (5/27) for families with male breast cancer, and 12.3% (25/203) for families with a single case of early-onset breast cancer. Nine mutations were specific to the Pakistani population. Eighteen mutations in BRCA1 and three in BRCA2 were recurrent and accounted for 68.2% (75/110) and 34.8% (8/23) of all identified mutations in BRCA1 and BRCA2, respectively. Most of these mutations were exclusive to a specific ethnic group and may result from founder effects. Conclusions Our findings show that BRCA1/2 mutations account for one in four cases of hereditary breast/ovarian cancer, one in five cases of male breast cancer, and one in eight cases of early-onset breast cancer in Pakistan. Our study suggests genetic testing of an extended panel of 21 recurrent BRCA1/2 mutations for appropriately selected patients and their families in Pakistan.
Collapse
Affiliation(s)
- Muhammad Usman Rashid
- 1Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan.,2Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Noor Muhammad
- 1Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Humaira Naeemi
- 1Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Faiz Ali Khan
- 1Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Mariam Hassan
- 3Clinical Research Office, SKMCH&RC, Lahore, Pakistan
| | - Saima Faisal
- 3Clinical Research Office, SKMCH&RC, Lahore, Pakistan
| | - Sidra Gull
- 1Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan.,4Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Asim Amin
- 5Levine Cancer Institute, Charlotte, USA
| | - Asif Loya
- 6Pathology Department, SKMCH&RC, Lahore, Pakistan
| | - Ute Hamann
- 2Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Edwinsdotter Ardnor C, Rosén A, Ljuslinder I, Melin B. The BRCA1 exon 13 duplication: clinical characteristics of 22 families in Northern Sweden. Fam Cancer 2018; 18:37-42. [PMID: 30136106 PMCID: PMC6323134 DOI: 10.1007/s10689-018-0098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The clinical management of BRCA1/2 mutation carriers requires accurate cancer risk estimates. Cancer risks vary according to type and location of the mutation and since there is limited information about mutation-specific cancer risks, genotype-phenotype correlation studies are needed. This is a report of 22 families with the same mutation, BRCA1 duplication exon 13, a mutation that is found world-wide, with the objective to describe the cancer history found in these families. We studied 69 confirmed carriers, 53 women and 16 men, and additionally 29 women who were clinically expected carriers. Among the confirmed carriers, 27 women (51%) were diagnosed with breast cancer, 10 (19%) with ovarian cancer, 5 (9%) with breast and ovarian cancer and 17 (32%) without cancer. Nine women (17%) with breast cancer were 35 years or younger at diagnose. Also, two cases of early onset colon cancer were found, and 37,5% of the male carriers were diagnosed with prostate cancer. These data may have implications for risk assessment and cancer prevention decision making for carriers of the BRCA1 duplication exon 13 mutation.
Collapse
Affiliation(s)
| | - Anna Rosén
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Ingrid Ljuslinder
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Beatrice Melin
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| |
Collapse
|
14
|
Liu X, Yao B, Wu Z. miRNA-199a-5p suppresses proliferation and invasion by directly targeting NF-κB1 in human ovarian cancer cells. Oncol Lett 2018; 16:4543-4550. [PMID: 30214589 DOI: 10.3892/ol.2018.9170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of microRNA (miRNA)-199a-5p has been frequently reported in a number of cancer types, but to the best of our knowledge, this has not been reported in ovarian cancer (OC). The role and the molecular mechanism of miR-199a-5p in OC have not been reported. Therefore, the present study investigated the effects of miR-199a-5p overexpression on the proliferation and invasion of OC cells. The level of miR-199a-5p in OC cell lines was determined by reverse transcription-quantitative polymerase chain reaction. The miR-199a-5p mimic was transiently transfected into OC cells using Lipofectamine™ 2000 reagent. Subsequently, the BrdU-ELISA results indicated that the exogenous expression of miR-199a-5p inhibited cell proliferation. In addition, miR-199a-5p overexpression was able to inhibit the invasion of HO-8910 and ES-2 cells. RT-qPCR was performed to determine the expression of matrix metalloproteinase (MMP)-2 and -9 in OC cells. NF-κB1 expression was reduced by upregulation of miR-199a-5p. Bioinformatics analysis predicted that NF-κB1 was a potential target of miR-199a-5p. Luciferase reporter assay further confirmed that miR-199a-5p was able to directly target the 3'UTR of NF-κB1. In conclusion, miRNA-199a-5p may suppress the proliferation and invasion of human ovarian cancer cells by directly targeting NF-κB1.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Internal Medicine-Oncology, Xinchang People's Hospital of Zhejiang, Shaoxing, Zhejiang 312500, P.R. China
| | - Baofeng Yao
- Department of Intensive Care Unit, Putuo Hospital of Zhejiang, Zhoushan, Zhejiang 316100, P.R. China
| | - Zhiming Wu
- Department of General Surgery, Shaoxing Hospital of China Medical University, Shaoxing, Zhejiang 312030, P.R. China
| |
Collapse
|
15
|
Yazıcı H, Kılıç S, Akdeniz D, Şükrüoğlu Ö, Tuncer ŞB, Avşar M, Kuru G, Çelik B, Küçücük S, Saip P. Frequency of Rearrangements Versus Small Indels Mutations in BRCA1 and BRCA2 Genes in Turkish Patients with High Risk Breast and Ovarian Cancer. Eur J Breast Health 2018; 14:93-99. [PMID: 29774317 DOI: 10.5152/ejbh.2017.3799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/04/2017] [Indexed: 12/30/2022]
Abstract
Objective The current rearrangement ratio of BRCA1 and BRCA2 genes is not known in the Turkish population. Rearrangements are not routinely investigated in many Turkish laboratories. This creates problems and contradictions between clinics. Therefore, the aim of this study was to evaluate the distribution and frequency of rearrangements in BRCA1 and BRCA2 genes in high-risk families and to clarify the limits of BRCA1 and BRCA2 testing in Turkey. Materials and Methods The study included 1809 patients at high risk of breast cancer or ovarian cancer. All patients were investigated for both small indels and rearrangements of BRCA genes using DNA sequencing and multiplex ligation-dependent probe amplification (MLPA) analysis. Results The overall frequency of rearrangements was 2% (25/1262). The frequency of rearrangements was 1.7% (18/1086) and 4% (9/206) in patients with breast cancer and ovarian cancer, respectively. The frequency of rearrangements was 3.7% (8/215) in patients with triple-negative breast cancer. The rearrangement rate was 7.7% (2/26) in patients with both breast and ovarian cancer. Conclusions Rearrangements were found with high rates and were strongly associated with bilateral and triple-negative status of patients with breast cancer, which are signs of high risk for breast and ovarian cancer. Analysis of rearrangements should definitely be included in routine clinical practice in Turkey for high-risk families and also for improved cancer risk prediction for families.
Collapse
Affiliation(s)
- Hülya Yazıcı
- Department of Cancer Genetics, Oncology Institute, University of Istanbul, İstanbul, Turkey
| | - Seda Kılıç
- Department of Cancer Genetics, Oncology Institute, University of Istanbul, İstanbul, Turkey
| | - Demet Akdeniz
- Department of Cancer Genetics, Oncology Institute, University of Istanbul, İstanbul, Turkey
| | - Özge Şükrüoğlu
- Department of Cancer Genetics, Oncology Institute, University of Istanbul, İstanbul, Turkey
| | - Şeref Buğra Tuncer
- Department of Cancer Genetics, Oncology Institute, University of Istanbul, İstanbul, Turkey
| | - Mukaddes Avşar
- Department of Cancer Genetics, Oncology Institute, University of Istanbul, İstanbul, Turkey
| | - Gözde Kuru
- Department of Cancer Genetics, Oncology Institute, University of Istanbul, İstanbul, Turkey
| | - Betül Çelik
- Department of Cancer Genetics, Oncology Institute, University of Istanbul, İstanbul, Turkey
| | - Seden Küçücük
- Department of Radiation Oncology, Oncology Institute, University of Istanbul, İstanbul, Turkey
| | - Pınar Saip
- Department of Medical Oncology, Oncology Institute, University of Istanbul, İstanbul, Turkey
| |
Collapse
|
16
|
Identification of the functional alteration signatures across different cancer types with support vector machine and feature analysis. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2218-2227. [PMID: 29277326 DOI: 10.1016/j.bbadis.2017.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/04/2017] [Accepted: 12/15/2017] [Indexed: 12/13/2022]
Abstract
Cancers are regarded as malignant proliferations of tumor cells present in many tissues and organs, which can severely curtail the quality of human life. The potential of using plasma DNA for cancer detection has been widely recognized, leading to the need of mapping the tissue-of-origin through the identification of somatic mutations. With cutting-edge technologies, such as next-generation sequencing, numerous somatic mutations have been identified, and the mutation signatures have been uncovered across different cancer types. However, somatic mutations are not independent events in carcinogenesis but exert functional effects. In this study, we applied a pan-cancer analysis to five types of cancers: (I) breast cancer (BRCA), (II) colorectal adenocarcinoma (COADREAD), (III) head and neck squamous cell carcinoma (HNSC), (IV) kidney renal clear cell carcinoma (KIRC), and (V) ovarian cancer (OV). Based on the mutated genes of patients suffering from one of the aforementioned cancer types, patients they were encoded into a large number of numerical values based upon the enrichment theory of gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We analyzed these features with the Monte-Carlo Feature Selection (MCFS) method, followed by the incremental feature selection (IFS) method to identify functional alteration features that could be used to build the support vector machine (SVM)-based classifier for distinguishing the five types of cancers. Our results showed that the optimal classifier with the selected 344 features had the highest Matthews correlation coefficient value of 0.523. Sixteen decision rules produced by the MCFS method can yield an overall accuracy of 0.498 for the classification of the five cancer types. Further analysis indicated that some of these features and rules were supported by previous experiments. This study not only presents a new approach to mapping the tissue-of-origin for cancer detection but also unveils the specific functional alterations of each cancer type, providing insight into cancer-specific functional aberrations as potential therapeutic targets. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang.
Collapse
|
17
|
Kim DH, Chae H, Jo I, Yoo J, Lee H, Jang W, Park J, Lee GD, Jeon DS, Lee KH, Hur SY, Chae BJ, Song BJ, Kim M, Kim Y. Identification of large genomic rearrangement of BRCA1/2 in high risk patients in Korea. BMC MEDICAL GENETICS 2017; 18:38. [PMID: 28351343 PMCID: PMC5371242 DOI: 10.1186/s12881-017-0398-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
Abstract
Background While the majority of germline inactivating mutations in BRCA1/2 are small-scale mutations, large genomic rearrangements (LGRs) are also detected in a variable proportion of patients. However, routine genetic methods are incapable of detecting LGRs, and comprehensive genetic testing algorithm is necessary. Methods We performed multiplex ligation-dependent probe amplification assay for small-scale mutation negative patients at high-risk for LGR, based on previously published LGR risk criteria. The inclusion criteria for the high-risk subgroup were personal history of 1) early-onset breast cancer (diagnosed at ≤36 years); 2) two breast primaries; 3) breast cancer diagnosed at any age, with ≥1 close blood relatives (includes first-, second-, or third-degree) with breast and/or epithelial ovarian cancer; 4) both breast and epithelial ovarian cancer diagnosed at any age; and 5) epithelial ovarian cancer with ≥1 close blood relatives with breast and/or epithelial ovarian cancer. Results Two LGRs were identified. One was a heterozygous deletion of exon 19 and the other was a heterozygous duplication of exon 4–6. The prevalence of LGRs was 7% among Sanger-negative, high-risk patients, and accounted for 13% of all BRCA1 mutations and 2% of all patients. Moreover, LGRs reported in Korean patients, including our 2 newly identified cases, were found exclusively in families with at least one high-risk feature. Conclusions Our result suggests that selective LGR screening for Sanger-negative, high-risk patients is necessary for Korean patients.
Collapse
Affiliation(s)
- Do-Hoon Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Hyojin Chae
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea. .,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Irene Jo
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jaeeun Yoo
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyeyoung Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woori Jang
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joonhong Park
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gun Dong Lee
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Dong-Seok Jeon
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Keun Ho Lee
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Soo Young Hur
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Joo Chae
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Joo Song
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Myungshin Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yonggoo Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.,Catholic Genetic Laboratory Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
18
|
McVeigh TP, Cody N, Carroll C, Duff M, Farrell M, Bradley L, Gallagher D, McDevitt T, Green AJ. Recurrent large genomic rearrangements in BRCA1 and BRCA2 in an Irish case series. Cancer Genet 2017; 214-215:1-8. [PMID: 28595730 DOI: 10.1016/j.cancergen.2017.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/12/2022]
Abstract
Mutations in BRCA1 and BRCA2 confer a highly increased risk of cancers, mainly of the breast and ovary. Most variants are point mutations or small insertions/deletions detectable by Sanger sequencing. Large genomic rearrangements, including deletions/duplications of multiple exons, are not routinely detectable by Sanger sequencing, but can be reliably identified by Multiplex Ligation-dependent Probe Amplification (MLPA), and account for 5-17% mutations in different populations. Comprehensive mutation testing using these two methods has been facilitated via our centre since 2005. The aim of this study was to investigate the incidence of and phenotype associated with large genomic rearrangements in BRCA1 and BRCA2 in an Irish cohort. An observational cohort study was undertaken. Patients with large genomic rearrangements in BRCA1/BRCA2 were identified from a prospectively maintained database of MLPA test results. Phenotypic and genotypic data were retrieved by chart review. Large genomic rearrangements in BRCA1 were identified in 49 families; and in BRCA2 in 7 families, representing ~11% of mutations in BRCA1/BRCA2 in Ireland. The most common large genomic rearrangement in BRCA1 was deletion of exons 1-23 (11 families, 7 from Co. Galway). Other common mutations included deletions of exon 3 (8 families) and exons 1-2 (6 families). Deletion of exons 19-20 in BRCA2 represented the familial mutation in five families, all from East Ireland (Wexford/Wicklow/Dublin). It is evident that a significant proportion of highly penetrant pathogenic variants in BRCA1 and BRCA2 will be missed if testing is limited to PCR-based Sanger sequencing alone. Screening for large genomic rearrangements in BRCA1 and BRCA2 in the routine diagnostic workflow is critical to avoid false negative results.
Collapse
Affiliation(s)
- Terri P McVeigh
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland.
| | - Nuala Cody
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| | - Cliona Carroll
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| | - Marie Duff
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| | - Michael Farrell
- Cancer Genetics Service, Mater Misericordiae University Hospital, Ireland
| | - Lisa Bradley
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| | - David Gallagher
- Cancer Genetics Service, Mater Misericordiae University Hospital, Ireland; Cancer Genetics Service, St James' University Hospital, UK
| | - Trudi McDevitt
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| | - Andrew J Green
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| |
Collapse
|
19
|
Contribution of BRCA1 large genomic rearrangements to early-onset and familial breast/ovarian cancer in Pakistan. Breast Cancer Res Treat 2016; 161:191-201. [PMID: 27826754 DOI: 10.1007/s10549-016-4044-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Germline mutations in BRCA1 and BRCA2 (BRCA1/2) account for the majority of hereditary breast and/or ovarian cancers. Pakistan has one of the highest rates of breast cancer incidence in Asia, where BRCA1/2 small-range mutations account for 17% of early-onset and familial breast/ovarian cancer patients. We report the first study from Pakistan evaluating the prevalence of BRCA1/2 large genomic rearrangements (LGRs) in breast and/or ovarian cancer patients who do not harbor small-range BRCA1/2 mutations. MATERIALS AND METHODS Both BRCA1/2 genes were comprehensively screened for LGRs using multiplex ligation-dependent probe amplification in 120 BRCA1/2 small-range mutations negative early-onset or familial breast/ovarian cancer patients from Pakistan (Group 1). The breakpoints were characterized by long-range PCR- and DNA-sequencing analyses. An additional cohort of 445 BRCA1/2 negative high-risk patients (Group 2) was analyzed for the presence of LGRs identified in Group 1. RESULTS Three different BRCA1 LGRs were identified in Group 1 (4/120; 3.3%), two of these were novel. Exon 1-2 deletion was observed in two unrelated patients: an early-onset breast cancer patient and another bilateral breast cancer patient from a hereditary breast cancer (HBC) family. Novel exon 20-21 deletion was detected in a 29-year-old breast cancer patient from a HBC family. Another novel exon 21-24 deletion was identified in a breast-ovarian cancer patient from a hereditary breast and ovarian cancer family. The breakpoints of all deletions were characterized. Screening of the 445 patients in Group 2 for the three LGRs revealed ten additional patients harboring exon 1-2 deletion or exon 21-24 deletion (10/445; 2.2%). No BRCA2 LGRs were identified. CONCLUSIONS LGRs in BRCA1 are found with a considerable frequency in Pakistani breast/ovarian cancer cases. Our findings suggest that BRCA1 exons 1-2 deletion and exons 21-24 deletion should be included in the recurrent BRCA1/2 mutations panel for genetic testing of high-risk Pakistani breast/ovarian cancer patients.
Collapse
|
20
|
|
21
|
Kwong A, Chen J, Shin VY, Ho JCW, Law FBF, Au CH, Chan TL, Ma ESK, Ford JM. The importance of analysis of long-range rearrangement of BRCA1 and BRCA2 in genetic diagnosis of familial breast cancer. Cancer Genet 2015; 208:448-54. [PMID: 26271414 DOI: 10.1016/j.cancergen.2015.05.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/30/2022]
Abstract
Germline BRCA gene mutations are reportedly associated with hereditary breast and ovarian cancers. Identification of BRCA mutations greatly improves the preventive strategies and management of breast cancer. Sanger sequencing has been the gold standard in identifying these mutations. However, 4-28% of inherited BRCA mutations may be due to large genomic rearrangements (LGRs), which could be missed by using Sanger sequencing alone. Our aim is to evaluate the pick-up rate of LGRs in our cohort. A total of 1,236 clinically high-risk patients with breast and/or ovarian cancers were recruited through The Hong Kong Hereditary Breast Cancer Family Registry from 2007 to 2014. Full gene sequencing (either Sanger or next generation sequencing) and multiplex ligation-dependent probe amplification (MLPA) were performed. We identified 120 deleterious BRCA mutations: 57 (4.61%) were in BRCA1 and 63 (5.10%) were in BRCA2. LGRs accounted for 6.67% (8 of 120) of all BRCA mutations, whereas 8.77 % (5 of 57) were BRCA1 mutations and 4.76% (3 of 63) were BRCA2 mutations. Through this integrated approach, both small nucleotide variations and LGRs could be detected. We suggest that MLPA should be incorporated into the standard practice for genetic testing to avoid false-negative results, which would greatly affect the management of these high-risk families.
Collapse
Affiliation(s)
- Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong SAR, China; Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China; Department of Oncology, Stanford University School of Medicine, Stanford, California, USA; Department of Surgery, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China.
| | - Jiawei Chen
- Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
| | - Vivian Y Shin
- Department of Surgery, The University of Hong Kong, Hong Kong SAR, China
| | - John C W Ho
- Department of Surgery, The University of Hong Kong, Hong Kong SAR, China; Department of Molecular Pathology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Fian B F Law
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China; Department of Molecular Pathology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Chun Hang Au
- Department of Molecular Pathology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Tsun-Leung Chan
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China; Department of Molecular Pathology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - Edmond S K Ma
- Hong Kong Hereditary Breast Cancer Family Registry, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China; Department of Molecular Pathology, Hong Kong Sanatorium and Hospital, Hong Kong SAR, China
| | - James M Ford
- Department of Oncology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|