1
|
Dueñas N, Klinkhammer H, Bonifaci N, Spier I, Mayr A, Hassanin E, Diez-Villanueva A, Moreno V, Pineda M, Maj C, Capellà G, Aretz S, Brunet J. Ability of a polygenic risk score to refine colorectal cancer risk in Lynch syndrome. J Med Genet 2023; 60:1044-1051. [PMID: 37321833 DOI: 10.1136/jmg-2023-109344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Polygenic risk scores (PRSs) have been used to stratify colorectal cancer (CRC) risk in the general population, whereas its role in Lynch syndrome (LS), the most common type of hereditary CRC, is still conflicting. We aimed to assess the ability of PRS to refine CRC risk prediction in European-descendant individuals with LS. METHODS 1465 individuals with LS (557 MLH1, 517 MSH2/EPCAM, 299 MSH6 and 92 PMS2) and 5656 CRC-free population-based controls from two independent cohorts were included. A 91-SNP PRS was applied. A Cox proportional hazard regression model with 'family' as a random effect and a logistic regression analysis, followed by a meta-analysis combining both cohorts were conducted. RESULTS Overall, we did not observe a statistically significant association between PRS and CRC risk in the entire cohort. Nevertheless, PRS was significantly associated with a slightly increased risk of CRC or advanced adenoma (AA), in those with CRC diagnosed <50 years and in individuals with multiple CRCs or AAs diagnosed <60 years. CONCLUSION The PRS may slightly influence CRC risk in individuals with LS in particular in more extreme phenotypes such as early-onset disease. However, the study design and recruitment strategy strongly influence the results of PRS studies. A separate analysis by genes and its combination with other genetic and non-genetic risk factors will help refine its role as a risk modifier in LS.
Collapse
Affiliation(s)
- Nuria Dueñas
- Hereditary Cancer Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Oncology (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, Netherlands
| | - Hannah Klinkhammer
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Nuria Bonifaci
- Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Oncology (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Isabel Spier
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, Netherlands
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University of Bonn, Bonn, Germany
| | - Andreas Mayr
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Emadeldin Hassanin
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna Diez-Villanueva
- Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Colorectal Cancer Group (ONCOBELL), Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), Instituto Salud Carlos III, Madrid, Spain
| | - Victor Moreno
- Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Colorectal Cancer Group (ONCOBELL), Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Epidemiology and Public Health (CIBERESP), Instituto Salud Carlos III, Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Oncology (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, Netherlands
| | - Carlo Maj
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gabriel Capellà
- Hereditary Cancer Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Oncology (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, Netherlands
| | - Stefan Aretz
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, Netherlands
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- National Center for Hereditary Tumor Syndromes, University of Bonn, Bonn, Germany
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology - ICO, L'Hospitalet de Llobregat, Spain
- Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Spain
- Biomedical Research Centre Network for Oncology (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
- European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Nijmegen, Netherlands
- Hereditary Cancer Program, Catalan Institute of Oncology - ICO, Girona, Spain
| |
Collapse
|
2
|
Grolmusz VK, Nagy P, Likó I, Butz H, Pócza T, Bozsik A, Papp J, Oláh E, Patócs A. A common genetic variation in GZMB may associate with cancer risk in patients with Lynch syndrome. Front Oncol 2023; 13:1005066. [PMID: 36890824 PMCID: PMC9986427 DOI: 10.3389/fonc.2023.1005066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Lynch syndrome (LS), also known as hereditary nonpolyposis colorectal cancer syndrome (HNPCC) is a common genetic predisposition to cancer due to germline mutations in genes affecting DNA mismatch repair. Due to mismatch repair deficiency, developing tumors are characterized by microsatellite instability (MSI-H), high frequency of expressed neoantigens and good clinical response to immune checkpoint inhibitors. Granzyme B (GrB) is the most abundant serine protease in the granules of cytotoxic T-cells and natural killer cells, mediating anti-tumor immunity. However, recent results confirm a diverse range of physiological functions of GrB including that in extracellular matrix remodelling, inflammation and fibrosis. In the present study, our aim was to investigate whether a frequent genetic variation of GZMB, the gene encoding GrB, constituted by three missense single nucleotide polymorphisms (rs2236338, rs11539752 and rs8192917) has any association with cancer risk in individuals with LS. In silico analysis and genotype calls from whole exome sequencing data in the Hungarian population confirmed that these SNPs are closely linked. Genotyping results of rs8192917 on a cohort of 145 individuals with LS demonstrated an association of the CC genotype with lower cancer risk. In silico prediction proposed likely GrB cleavage sites in a high proportion of shared neontigens in MSI-H tumors. Our results propose the CC genotype of rs8192917 as a potential disease-modifying genetic factor in LS.
Collapse
Affiliation(s)
- Vince Kornél Grolmusz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Petra Nagy
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - István Likó
- Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Henriett Butz
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary.,National Oncology Biobank Center, National Institute of Oncology, Budapest, Hungary
| | - Tímea Pócza
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Anikó Bozsik
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - János Papp
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Edit Oláh
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary.,Hereditary Cancers Research Group, Eötvös Loránd Research Network - Semmelweis University, Budapest, Hungary.,Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.,National Tumorbiology Laboratory, National Institute of Oncology, Budapest, Hungary
| |
Collapse
|
3
|
Chasioti D, Yan J, Nho K, Saykin AJ. Progress in Polygenic Composite Scores in Alzheimer's and Other Complex Diseases. Trends Genet 2019; 35:371-382. [PMID: 30922659 PMCID: PMC6475476 DOI: 10.1016/j.tig.2019.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 11/25/2022]
Abstract
Advances in high-throughput genotyping and next-generation sequencing (NGS) coupled with larger sample sizes brings the realization of precision medicine closer than ever. Polygenic approaches incorporating the aggregate influence of multiple genetic variants can contribute to a better understanding of the genetic architecture of many complex diseases and facilitate patient stratification. This review addresses polygenic concepts, methodological developments, hypotheses, and key issues in study design. Polygenic risk scores (PRSs) have been applied to many complex diseases and here we focus on Alzheimer's disease (AD) as a primary exemplar. This review was designed to serve as a starting point for investigators wishing to use PRSs in their research and those interested in enhancing clinical study designs through enrichment strategies.
Collapse
Affiliation(s)
- Danai Chasioti
- Department of BioHealth Informatics, Indiana University-Purdue University, Indianapolis, IN 46202, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Jingwen Yan
- Department of BioHealth Informatics, Indiana University-Purdue University, Indianapolis, IN 46202, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kwangsik Nho
- Department of BioHealth Informatics, Indiana University-Purdue University, Indianapolis, IN 46202, USA; Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Andrew J Saykin
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
4
|
Lamba A, Parekh P, Dvorak CT, Karlitz JJ. Pedigree analysis supports a correlation between an AXIN2 variant and polyposis/colorectal cancer. World J Med Genet 2018; 8:1-4. [DOI: 10.5496/wjmg.v8.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/18/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
We present a patient with a history of colonic polyposis and family history significant for colon polyps and colorectal cancer (CRC). The patient and the family also had a history of bone loss of the jaw and early tooth loss, consistent with oligodontia. Genetic testing revealed the patient to have a previously unpublished variant of unknown significance (VUS) in the AXIN2 gene. These clinical findings have been demonstrated previously in only two other families, both of which exhibited oligodontia, colorectal neoplasia (polyps and cancer) and a heterozygous mutation in AXIN2. The AXIN2 protein is component of the Wnt pathway, which is known to be vital for organism development and cellular homeostasis. Alterations of the Wnt pathway lead to cell proliferation and neoplasm, in addition to agenesis of physical structures (such as teeth). The analysis of our pedigree further supports an association between colonic neoplasm (polyposis and CRC), the AXIN2 gene in general, and this particular VUS. It also highlights the importance of analyzing and disseminating information on pedigrees with less commonly encountered genomic abnormalities so that genotypic-phenotypic correlations can be solidified.
Collapse
Affiliation(s)
- Amrit Lamba
- Department of Internal Medicine, Tulane University, New Orleans, LA 70112, United States
| | - Parth Parekh
- Department of Gastroenterology, Carillion Clinic, Roanoke, VA 24016, United States
| | - Chris T Dvorak
- Department of Genetics, Tulane University, New Orleans, LA 70112, United States
| | - Jordan J Karlitz
- Department of Gastroenterology, Tulane University, New Orleans, LA 70112, United States
| |
Collapse
|