1
|
Hamada M, Hida T, Idogawa M, Tange S, Kamiya T, Okura M, Yamashita T, Tokino T, Uhara H. Mosaic SUFU mutation associated with a mild phenotype of multiple hereditary infundibulocystic basal cell carcinoma syndrome. J Dermatol 2025; 52:150-154. [PMID: 39158191 DOI: 10.1111/1346-8138.17434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Multiple hereditary infundibulocystic basal cell carcinoma syndrome (MHIBCC), an autosomal dominant disorder caused by variants in SUFU, is characterized by numerous infundibulocystic basal cell carcinomas (IBCCs). In this report, we present a possible case of mosaic MHIBCC. A 57-year-old woman underwent the removal of four papules on her face, which were diagnosed as IBCCs. Exome sequencing revealed a SUFU c.1022+1G>A mutation within the skin tumor. The same mutation was detected in her blood but at a lower allele frequency. TA cloning revealed that the allele frequency of the mutation in the blood was 0.07. Additionally, tumor assessment revealed loss of heterozygosity (LOH) in chromosome 10, including the SUFU locus. These results indicate the patient had mosaicism for the SUFU mutation in normal tissues, aligning with the mosaic MHIBCC diagnosis. This, combined with LOH, likely contributed to IBCC development. Mosaic MHIBCC may present with milder symptoms. However, it may still increase the risk of developing brain tumors and more aggressive basal cell carcinoma. The possibility of mosaicism should be investigated in mild MHIBCC cases, where standard genetic tests fail to detect SUFU germline variants.
Collapse
Affiliation(s)
- Marina Hamada
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shoichiro Tange
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takafumi Kamiya
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masae Okura
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiharu Yamashita
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hisashi Uhara
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
2
|
Abbott JJ, Jiang AJ, Godse R, Ahmed S, Senft SC, Wilson MA, Cohen JV, Mitchell TC, Ogunleye TA, Higgins HW, Shin TM, Miller CJ, Roth JJ, Priore SF, Castelo-Soccio L, Elenitsas R, Seykora JT, Nathanson KL, Chu EY. Inherited Basaloid Neoplasms Associated With SUFU Pathogenic Variants. JAMA Dermatol 2024; 160:1220-1224. [PMID: 39292485 PMCID: PMC11411443 DOI: 10.1001/jamadermatol.2024.3315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/17/2024] [Indexed: 09/19/2024]
Abstract
Importance Germline SUFU pathogenic variants (PVs) have previously been associated with basal cell nevus syndrome (BCNS) and multiple infundibulocystic basal cell carcinoma syndrome; however, a broader spectrum of cutaneous findings in patients with SUFU PVs has not been well delineated. Objective To define the clinical and histopathologic spectrum of cutaneous findings in patients with germline SUFU PVs. Design, Setting, and Participants This case series was conducted in multiple US academic dermatology, medical genetics, and medical oncology clinics between July 2014 and July 2022. The study included patients with confirmed germline SUFU PVs who were evaluated by a dermatologist. The analysis took place from March to September 2023. Main Outcomes and Measures Histopathologic evaluation of skin biopsies with or without immunohistochemical staining, and targeted next-generation sequencing (NGS) on tumor specimens. Results All 5 patients were women. The mean (range) age at presentation was 50.2 (31-68) years, with skin manifestations initially appearing in the fourth to sixth decades of life. None had keratocystic odontogenic tumors. A total of 29 skin pathology specimens from the 5 patients were reviewed; of these, 3 (10.3%) were diagnosed as basaloid follicular hamartomas (BFHs), 10 (34.5%) classified as infundibulocystic basal cell carcinomas (iBCCs), 6 (20.7%) classified as nodular basal cell carcinomas (nBCCs), and 1 (3.4%) as infiltrative basal cell carcinoma (BCC). Targeted NGS studies on tumor specimens suggest that an increased number of UV-signature variants is associated with basal cell carcinomas compared with more indolent basaloid follicular hamartomas. Conclusions and Relevance Patients with germline SUFU PVs may present with multiple indolent basaloid neoplasms in addition to conventional basal cell carcinomas, typically appearing in the fourth to sixth decades of life. Although there are overlapping clinical manifestations, these findings help to differentiate the clinical syndrome associated with SUFU PVs from PTCH1 BCNS. Awareness of the clinicopathologic spectrum of SUFU-associated basaloid neoplasms is important for dermatologists and dermatopathologists because many (although not all) of these lesions are indolent and do not require aggressive surgical treatment. Importantly, because SUFU lies downstream of the protein smoothened, vismodegib and other smoothened inhibitors are unlikely to be effective therapies in this subset of patients.
Collapse
Affiliation(s)
- James J Abbott
- Department of Dermatology, Billings Clinic, Billings, Montana
| | - Angela J Jiang
- Department of Dermatology, Oregon Health and Sciences University, Portland
| | - Rama Godse
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Sarah Ahmed
- Department of Dermatology, St Luke's University Health Network, Easton, Pennsylvania
| | - Stephen C Senft
- Department of Dermatology, St Luke's University Health Network, Easton, Pennsylvania
| | - Melissa A Wilson
- Division of Medical Oncology, St Luke's University Health Network, Easton, Pennsylvania
| | | | - Tara C Mitchell
- Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia
| | - Temitayo A Ogunleye
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - H William Higgins
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Thuzar M Shin
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Christopher J Miller
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Jacquelyn J Roth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Salvatore F Priore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Leslie Castelo-Soccio
- Cutaneous Microbiome and Inflammation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rosalie Elenitsas
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - John T Seykora
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Katherine L Nathanson
- Division of Medical Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| | - Emily Y Chu
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia
| |
Collapse
|
3
|
Neaga S, Beiu C, Popa LG, Orlov Slavu CM, Anghel AW. Successful Radiotherapy for Metastatic Basal Cell Carcinoma to the Parotid Gland in a Patient With Gorlin-Goltz Syndrome. Cureus 2024; 16:e67152. [PMID: 39295706 PMCID: PMC11408743 DOI: 10.7759/cureus.67152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2024] [Indexed: 09/21/2024] Open
Abstract
Gorlin-Goltz syndrome (GGS), also known as nevoid basal cell carcinoma syndrome (NBCCS), is an autosomal dominant condition characterized by a predisposition to multiple basal cell carcinomas (BCCs) and other neoplasms and is commonly associated with pathogenic variants in the PTCH1 or SUFU tumor suppressor genes. However, the absence of these genetic markers does not preclude the diagnosis due to the variable genetic expression of the syndrome. Diagnosis relies on a set of established major and minor criteria, particularly when genetic testing fails to identify the typical pathogenic variants. The primary clinical manifestation of GGS is the development of multiple BCCs. While these typically exhibit slow growth and remain localized, they can manifest more aggressive behavior in individuals with GGS, including local invasiveness and metastatic potential. Moreover, patients with GGS display heightened sensitivity to ionizing radiation, leading to general contraindications for radiation therapy (RT) due to the risk of inducing additional BCCs. Despite these concerns, we report a case where RT was the only feasible treatment for an inoperable BCC that had metastasized to the parotid gland in a GGS patient. The successful use of RT, which resulted in a cure without adverse effects, illustrates that RT may be a viable option for some GGS patients, reflecting individual variability in radiation sensitivity. This case underscores the importance of personalized treatment plans in managing the complex presentations of GGS, challenging the traditional constraints regarding the use of RT in these patients and suggesting the potential for its reconsideration under specific circumstances.
Collapse
Affiliation(s)
- Stefan Neaga
- Dermatology, Elias Emergency University Hospital, Bucharest, ROU
| | - Cristina Beiu
- Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Liliana G Popa
- Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | | | - Andrei W Anghel
- Radiotherapy, Elias Emergency University Hospital, Bucharest, ROU
| |
Collapse
|
4
|
Lee SG, Evans G, Stephen M, Goren R, Bondy M, Goodman S. Medulloblastoma and other neoplasms in patients with heterozygous germline SUFU variants: A scoping review. Am J Med Genet A 2024; 194:e63496. [PMID: 38282294 DOI: 10.1002/ajmg.a.63496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
In 2002, heterozygous suppressor of fused variants (SUFU+/-) in the germline were described to have a tumor suppressor role in the development of pediatric medulloblastoma (MB). Other neoplasms associated with pathologic germline SUFU+/- variants have also been described among patients with basal cell nevus syndrome (BCNS; BCNS is also known as Gorlin syndrome, nevoid basal cell carcinoma [BCC] syndrome or Gorlin-Goltz syndrome; OMIM 109400), an autosomal-dominant cancer predisposition syndrome. The phenotype of patients with germline SUFU+/- variants is very poorly characterized due to a paucity of large studies with long-term follow-up. As such, there is a clinical need to better characterize the spectrum of neoplasms among patients with germline SUFU+/- variants so that clinicians can provide accurate counseling and optimize tumor surveillance strategies. The objective of this study is to perform a scoping review to map the evidence on the rate of medulloblastoma and to describe the spectrum of other neoplasms among patients with germline SUFU+/- variants. A review of all published literature in PubMed (MEDLINE), EMBASE, Cochrane, and Web of Science were searched from the beginning of each respective database until October 9, 2021. Studies of pediatric and adult patients with a confirmed germline SUFU+/- variant who were evaluated for the presence of any neoplasm (benign or malignant) were included. There were 176 patients (N = 30 studies) identified with a confirmed germline SUFU+/- variant who met inclusion criteria. Data were extracted from two cohort studies, two case-control studies, 18 case series, and eight case reports. The median age at diagnosis of a germline SUFU+/- variant was 4.5 years where 44.4% identified as female and 13.4% of variants were de novo. There were 34 different neoplasms (benign and malignant) documented among patients with confirmed germline SUFU+/- variants, and the most common were medulloblastoma (N = 59 patients), BCC (N = 21 patients), and meningioma (N = 19 patients). The median age at medulloblastoma diagnosis was 1.42 years (range 0.083-3; interquartile range 1.2). When data were available for these three most frequent neoplasms (N = 95 patients), 31 patients (32.6%) had neither MB, BCC nor meningioma; 51 patients (53.7%) had one of medulloblastoma or BCC or meningioma; eight patients (8.4%) had two of medulloblastoma or BCC or meningioma, and five patients (5.3%) had medulloblastoma and BCC and meningioma. This is the first study to synthesize the data on the frequency and spectrum of neoplasms specifically among patients with a confirmed germline SUFU+/- variant. This scoping review is a necessary step forward in optimizing evidence-based tumor surveillance strategies for medulloblastoma and estimating the risk of other neoplasms that could impact patient outcomes.
Collapse
Affiliation(s)
- Stephanie G Lee
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Gareth Evans
- Division of Evolution, Infection and Genomic Science, Manchester Centre for Genomic Medicine, Manchester Academic Health Science Centre, University of Manchester, Manchester NHS Foundation Trust, Manchester, UK
| | - Maddie Stephen
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Goren
- Queen's School of Medicine, Queens University, Kingston, Ontario, Canada
| | - Melissa Bondy
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, USA
| | - Steven Goodman
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
5
|
Peris K, Fargnoli MC, Kaufmann R, Arenberger P, Bastholt L, Seguin NB, Bataille V, Brochez L, Del Marmol V, Dummer R, Forsea AM, Gaudy-Marqueste C, Harwood CA, Hauschild A, Höller C, Kandolf L, Kellerners-Smeets NWJ, Lallas A, Leiter U, Malvehy J, Marinović B, Mijuskovic Z, Moreno-Ramirez D, Nagore E, Nathan P, Stratigos AJ, Stockfleth E, Tagliaferri L, Trakatelli M, Vieira R, Zalaudek I, Garbe C. European consensus-based interdisciplinary guideline for diagnosis and treatment of basal cell carcinoma-update 2023. Eur J Cancer 2023; 192:113254. [PMID: 37604067 DOI: 10.1016/j.ejca.2023.113254] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
Basal cell carcinoma (BCC) is the most common malignant tumour in white populations. Multidisciplinary experts from European Association of Dermato-Oncology (EADO), European Dermatology Forum, European Society for Radiotherapy and Oncology (ESTRO), Union Européenne des Médecins Spécialistes, and the European Academy of Dermatology and Venereology developed updated recommendations on diagnosis and treatment of BCC. BCCs were categorised into 'easy-to-treat' (common) and 'difficult-to-treat' according to the new EADO clinical classification. Diagnosis is based on clinico-dermatoscopic features, although histopathological confirmation is mandatory in equivocal lesions. The first-line treatment of BCC is complete surgery. Micrographically controlled surgery shall be offered in high-risk and recurrent BCC, and BCC located on critical anatomical sites. Topical therapies and destructive approaches can be considered in patients with low-risk superficial BCC. Photodynamic therapy is an effective treatment for superficial and low-risk nodular BCCs. Management of 'difficult-to-treat' BCCs should be discussed by a multidisciplinary tumour board. Hedgehog inhibitors (HHIs), vismodegib or sonidegib, should be offered to patients with locally advanced and metastatic BCC. Immunotherapy with anti-PD1 antibodies (cemiplimab) is a second-line treatment in patients with a progression of disease, contraindication, or intolerance to HHI therapy. Radiotherapy represents a valid alternative in patients who are not candidates for or decline surgery, especially elderly patients. Electrochemotherapy may be offered when surgery or radiotherapy is contraindicated. In Gorlin patients, regular skin examinations are required to diagnose and treat BCCs at an early stage. Long-term follow-up is recommended in patients with high-risk BCC, multiple BCCs, and Gorlin syndrome.
Collapse
Affiliation(s)
- Ketty Peris
- Institute of Dermatology, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
| | - Maria Concetta Fargnoli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, University Hospital Frankfurt, Germany
| | - Petr Arenberger
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, Denmark
| | | | - Veronique Bataille
- Twin Research and Genetic Epidemiology Unit, School of Basic & Medical Biosciences, King's College London, London SE1 7EH, UK
| | - Lieve Brochez
- Department of Dermatology, University Hospital Ghent, Ghent, Belgium
| | - Veronique Del Marmol
- Department of Dermatology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich and University Zurich, Switzerland
| | - Ana-Marie Forsea
- Department of Oncologic Dermatology, Elias University Hospital Bucharest, Carol Davila University of Medicine and Pharmacy Bucharest, Bucharest, Romania
| | | | - Catherine A Harwood
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Axel Hauschild
- Department of Dermatology, University of Kiel, Kiel, Germany
| | - Christoph Höller
- Department of Dermatology, Medical University of Vienna, Austria
| | - Lidija Kandolf
- Department of Dermatology, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia
| | - Nicole W J Kellerners-Smeets
- GROW-School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands; Department of Dermatology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Aimilios Lallas
- First Department of Dermatology, Aristotle University, Thessaloniki, Greece
| | - Ulrike Leiter
- Centre for Dermatooncology, Department of Dermatology, Eberhard-Karls University, Tuebingen, Germany
| | - Josep Malvehy
- Department of Dermatology, Hospital Clínic de Barcelona (Melanoma Unit), University of Barcelona, IDIBAPS, Barcelona & CIBERER, Barcelona, Spain
| | - Branka Marinović
- Department of Dermatology and Venereology, University Hospital Center Zagreb, Croatia
| | - Zeljko Mijuskovic
- Department of Dermatology, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia
| | - David Moreno-Ramirez
- Dermatology. Medicine School, University of Seville, University Hospital Virgen Macarena, Seville-Spain
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano de Oncologia, Valencia, Spain
| | | | - Alexander J Stratigos
- First Department of Dermatology-Venereology, National and Kapodistrian University of Athens, School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Eggert Stockfleth
- Department of Dermatology, Skin Cancer Center, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Luca Tagliaferri
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radioterapia, Dipartimento di Scienze Radiologiche, Radioterapiche ed Ematologiche, Rome, Italy
| | - Myrto Trakatelli
- Second Department of Dermatology, Aristotle University Medical School, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Ricardo Vieira
- Coimbra Hospital and Universitary Centre, Coimbra, Portugal
| | - Iris Zalaudek
- Dermatology Clinic, University of Trieste, Trieste, Italy
| | - Claus Garbe
- Centre for Dermatooncology, Department of Dermatology, Eberhard-Karls University, Tuebingen, Germany
| |
Collapse
|
6
|
Paradise BD, Gainullin VG, Almada LL, Sigafoos AN, Sen S, Vera RE, Arul GLR, Toruner M, Pease DR, Gonzalez AL, Mentucci FM, Grasso DH, Fernandez-Zapico ME. SUFU promotes GLI activity in a Hedgehog-independent manner in pancreatic cancer. Biochem J 2023; 480:1199-1216. [PMID: 37477952 PMCID: PMC11973541 DOI: 10.1042/bcj20220439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/22/2023]
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway, through which the GLI family of transcription factors (TF) is stimulated, is commonly observed in cancer cells. One well-established mechanism of this increased activity is through the inactivation of Suppressor of Fused (SUFU), a negative regulator of the Hh pathway. Relief from negative regulation by SUFU facilitates GLI activity and induction of target gene expression. Here, we demonstrate a novel role for SUFU as a promoter of GLI activity in pancreatic ductal adenocarcinoma (PDAC). In non-ciliated PDAC cells unresponsive to Smoothened agonism, SUFU overexpression increases GLI transcriptional activity. Conversely, knockdown (KD) of SUFU reduces the activity of GLI in PDAC cells. Through array PCR analysis of GLI target genes, we identified B-cell lymphoma 2 (BCL2) among the top candidates down-regulated by SUFU KD. We demonstrate that SUFU KD results in reduced PDAC cell viability, and overexpression of BCL2 partially rescues the effect of reduced cell viability by SUFU KD. Further analysis using as a model GLI1, a major TF activator of the GLI family in PDAC cells, shows the interaction of SUFU and GLI1 in the nucleus through previously characterized domains. Chromatin immunoprecipitation (ChIP) assay shows the binding of both SUFU and GLI1 at the promoter of BCL2 in PDAC cells. Finally, we demonstrate that SUFU promotes GLI1 activity without affecting its protein stability. Through our findings, we propose a novel role of SUFU as a positive regulator of GLI1 in PDAC, adding a new mechanism of Hh/GLI signaling pathway regulation in cancer cells.
Collapse
Affiliation(s)
- Brooke D. Paradise
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905
| | | | - Luciana L. Almada
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
| | - Ashley N. Sigafoos
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
| | - Sandhya Sen
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
| | - Renzo E. Vera
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
| | - Glancis Luzeena Raja Arul
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905
| | - Murat Toruner
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
| | - David R. Pease
- Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, 55905
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905
| | - Alina L. Gonzalez
- Facultad de Ciencias Exactas y Naturales, Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Universidad Nacional de La Pampa – Consejo Nacional de Investigaciones Científicas y Técnicas (UNLPam-CONICET), La Pampa, Argentina, 6300
| | | | - Daniel H. Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Escuela de Farmacia y Bioquimica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina, 1113
| | | |
Collapse
|
7
|
Petrosian D, Reiter P, Rozenberg SS, Petrosian S. A case of Gorlin syndrome like phenotype with multiple infundibulocystic basal cell carcinomas in a moniliform blepharosis arrangement. JAAD Case Rep 2023; 34:27-31. [PMID: 36941877 PMCID: PMC10023862 DOI: 10.1016/j.jdcr.2023.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Affiliation(s)
- David Petrosian
- Department of Family Medicine, St. John’s Episcopal Hospital, Far Rockaway, New York
- Correspondence to: David Petrosian, DO, 6515 Alderton St, Apt 2A, Rego Park, NY 11374.
| | - Paloma Reiter
- Department of Dermatology, St. John’s Episcopal Hospital, Far Rockaway, New York
| | | | - Sergey Petrosian
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, New York
| |
Collapse
|
8
|
Álvarez-Salafranca M, García-García M, Montes-Torres A, Rivera-Fuertes I, López-Giménez MT, Ara M. SUFU-associated Gorlin syndrome: Expanding the spectrum between classic nevoid basal cell carcinoma syndrome and multiple hereditary infundibulocystic basal cell carcinoma. Australas J Dermatol 2023; 64:249-254. [PMID: 36825822 DOI: 10.1111/ajd.14014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
Basal cell nevus syndrome (BCNS), also known as Gorlin syndrome, is characterized by an aberrant activation of the hedgehog (Hh) pathway, most cases being caused by PTCH1 mutations. However, certain features such as multiple hereditary infundibulocystic basal cell carcinomas (MHIBCC), sclerotic fibromas, childhood medulloblastoma or meningioma may be relatively specific to a SUFU mutation. We present two patients with MHIBCC, along with a more complex cutaneous and extracutaneous phenotype. MHIBCC syndrome and BCNS may share clinical features and, indeed, both syndromes probably represent different degrees of upregulation in the Hh pathway.
Collapse
Affiliation(s)
| | - Mar García-García
- Department of Pathology, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | - Andrea Montes-Torres
- Department of Dermatology, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | - Ignacio Rivera-Fuertes
- Department of Dermatology, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| | | | - Mariano Ara
- Department of Dermatology, Hospital Clínico Universitario "Lozano Blesa", Zaragoza, Spain
| |
Collapse
|
9
|
Zarzosa P, Garcia-Gilabert L, Hladun R, Guillén G, Gallo-Oller G, Pons G, Sansa-Girona J, Segura MF, Sánchez de Toledo J, Moreno L, Gallego S, Roma J. Targeting the Hedgehog Pathway in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:727. [PMID: 36765685 PMCID: PMC9913695 DOI: 10.3390/cancers15030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Aberrant activation of the Hedgehog (Hh) signalling pathway is known to play an oncogenic role in a wide range of cancers; in the particular case of rhabdomyosarcoma, this pathway has been demonstrated to be an important player for both oncogenesis and cancer progression. In this review, after a brief description of the pathway and the characteristics of its molecular components, we describe, in detail, the main activation mechanisms that have been found in cancer, including ligand-dependent, ligand-independent and non-canonical activation. In this context, the most studied inhibitors, i.e., SMO inhibitors, have shown encouraging results for the treatment of basal cell carcinoma and medulloblastoma, both tumour types often associated with mutations that lead to the activation of the pathway. Conversely, SMO inhibitors have not fulfilled expectations in tumours-among them sarcomas-mostly associated with ligand-dependent Hh pathway activation. Despite the controversy existing regarding the results obtained with SMO inhibitors in these types of tumours, several compounds have been (or are currently being) evaluated in sarcoma patients. Finally, we discuss some of the reasons that could explain why, in some cases, encouraging preclinical data turned into disappointing results in the clinical setting.
Collapse
Affiliation(s)
- Patricia Zarzosa
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lia Garcia-Gilabert
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Raquel Hladun
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriela Guillén
- Pediatric Surgery Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriel Gallo-Oller
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Guillem Pons
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Julia Sansa-Girona
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Miguel F. Segura
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Sánchez de Toledo
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lucas Moreno
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Soledad Gallego
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Roma
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
10
|
Di Brizzi EV, Argenziano G, Brancaccio G, Scharf C, Ronchi A, Moscarella E. The current clinical approach to difficult-to-treat basal cell carcinomas. Expert Rev Anticancer Ther 2023; 23:43-56. [PMID: 36579630 DOI: 10.1080/14737140.2023.2161517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Basal cell carcinoma (BCC) is the most common malignant tumor in adult white populations. If BCCs are not treated for years, if they cause massive destruction of the surrounding tissues, if they are considered unresectable or not eligible for radiotherapy they become progressively 'locally advanced' (laBCC) or metastatic (mBCC). These tumors are defined as 'difficult-to-treat BCC.' AREAS COVERED A comprehensive search on PubMed was conducted to identify relevant literature about the several approved and recommended treatment options for the management of difficult-to-treat BCC published from January 2012 to July 2022. Surgical options, radiotherapy, hedgehog inhibitors, immunotherapy, and combined treatments are discussed. The keywords used were basal cell carcinoma; difficult-to-treat BCC; management of difficult-to-treat BCC; surgical therapy; radiotherapy; hedgehog inhibitors; immunotherapy. EXPERT OPINION Identifying the best approach to DTT BCCs is one of the main challenges for the dermato-oncologist. The introduction of HHI for the treatment of advanced BCCs has revolutionized the clinical management of DTT BCCs. The immune checkpoint inhibitor cemiplimab has been approved for the treatment of locally advanced or metastatic BCC refractory to HHI therapy or in patients intolerant to HHI therapy. Multidisciplinary teams (MDTs) play a key role in managing these complex patients.
Collapse
Affiliation(s)
| | | | | | - Camila Scharf
- Dermatology Unit, University of Campania, Naples, Italy
| | - Andrea Ronchi
- Pathology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | |
Collapse
|
11
|
Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer. Cancers (Basel) 2022; 14:cancers14235967. [PMID: 36497448 PMCID: PMC9739414 DOI: 10.3390/cancers14235967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The prevalence of hereditary cancer in children was estimated to be very low until recent studies suggested that at least 10% of pediatric cancer patients carry a germline mutation in a cancer predisposition gene. A significant proportion of pathogenic variants associated with an increased risk of hereditary cancer are variants affecting splicing. RNA splicing is an essential process involved in different cellular processes such as proliferation, survival, and differentiation, and alterations in this pathway have been implicated in many human cancers. Hereditary cancer genes are highly susceptible to splicing mutations, and among them there are several genes that may contribute to pediatric solid tumors when mutated in the germline. In this review, we have focused on the analysis of germline splicing-disrupting mutations found in pediatric solid tumors, as the discovery of pathogenic splice variants in pediatric cancer is a growing field for the development of personalized therapies. Therapies developed to correct aberrant splicing in cancer are also discussed as well as the options to improve the diagnostic yield based on the increase in the knowledge in splicing.
Collapse
|
12
|
Leiomyomatosis in an Infant With a SUFU Splice Site Variant: Case Report. J Pediatr Hematol Oncol 2022; 44:e914-e917. [PMID: 35398865 DOI: 10.1097/mph.0000000000002454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/23/2022] [Indexed: 11/26/2022]
Abstract
Heterozygous loss-of-function variants in the suppressor of fused protein gene (SUFU) can result in Gorlin syndrome, which is characterized by an increased frequency of basal cell carcinoma, medulloblastoma, odontogenic keratocysts, as well as other tumors. We describe a case of a 5-month-old female who presented with multiple intra-abdominal leiomyomata and was found to have a likely pathogenic splice site variant in the SUFU gene. This is the first reported case of leiomyomatosis secondary to a pathogenic SUFU variant in an infant and may represent an early, atypical presentation of Gorlin syndrome.
Collapse
|
13
|
Guerrini-Rousseau L, Masliah-Planchon J, Waszak SM, Alhopuro P, Benusiglio PR, Bourdeaut F, Brecht IB, Del Baldo G, Dhanda SK, Garrè ML, Gidding CEM, Hirsch S, Hoarau P, Jorgensen M, Kratz C, Lafay-Cousin L, Mastronuzzi A, Pastorino L, Pfister SM, Schroeder C, Smith MJ, Vahteristo P, Vibert R, Vilain C, Waespe N, Winship IM, Evans DG, Brugieres L. Cancer risk and tumour spectrum in 172 patients with a germline SUFU pathogenic variation: a collaborative study of the SIOPE Host Genome Working Group. J Med Genet 2022; 59:jmedgenet-2021-108385. [PMID: 35768194 PMCID: PMC9613872 DOI: 10.1136/jmedgenet-2021-108385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/23/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Little is known about risks associated with germline SUFU pathogenic variants (PVs) known as a cancer predisposition syndrome. METHODS To study tumour risks, we have analysed data of a large cohort of 45 unpublished patients with a germline SUFU PV completed with 127 previously published patients. To reduce the ascertainment bias due to index patient selection, the risk of tumours was evaluated in relatives with SUFU PV (89 patients) using the Nelson-Aalen estimator. RESULTS Overall, 117/172 (68%) SUFU PV carriers developed at least one tumour: medulloblastoma (MB) (86 patients), basal cell carcinoma (BCC) (25 patients), meningioma (20 patients) and gonadal tumours (11 patients). Thirty-three of them (28%) had multiple tumours. Median age at diagnosis of MB, gonadal tumour, first BCC and first meningioma were 1.5, 14, 40 and 44 years, respectively. Follow-up data were available for 160 patients (137 remained alive and 23 died). The cumulative incidence of tumours in relatives was 14.4% (95% CI 6.8 to 21.4), 18.2% (95% CI 9.7 to 25.9) and 44.1% (95% CI 29.7 to 55.5) at the age of 5, 20 and 50 years, respectively. The cumulative risk of an MB, gonadal tumour, BCC and meningioma at age 50 years was: 13.3% (95% CI 6 to 20.1), 4.6% (95% CI 0 to 9.7), 28.5% (95% CI 13.4 to 40.9) and 5.2% (95% CI 0 to 12), respectively. Sixty-four different PVs were reported across the entire SUFU gene and inherited in 73% of cases in which inheritance could be evaluated. CONCLUSION Germline SUFU PV carriers have a life-long increased risk of tumours with a spectrum dominated by MB before the age of 5, gonadal tumours during adolescence and BCC and meningioma in adulthood, justifying fine-tuned surveillance programmes.
Collapse
Affiliation(s)
- Léa Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
- Team "Genomics and Oncogenesis of pediatric Brain Tumors"-Paris Saclay University, INSERM U981, VILLEJUIF, France
| | - Julien Masliah-Planchon
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Institute Curie, Paris, France
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Pia Alhopuro
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| | - Patrick R Benusiglio
- Département de Génétique et Institut Universitaire de Cancérologie, Sorbonne University Faculty of Medicine Pitié-Salpêtrière Campus, Paris, France
| | - Franck Bourdeaut
- INSERM U830, Laboratory of Translational Research in Pediatric Oncology, SIREDO Pediatric Oncology Center, Institute Curie, Paris, France
| | - Ines B Brecht
- Department of Pediatric Oncology and Hematology, University Hospitals Tubingen, Tubingen, Germany
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapy and Hemopoietic Transplant, IRCCS, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Sandeep Kumar Dhanda
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Maria Luisa Garrè
- Neuro-Oncology Unit, Department of Neurochirurgia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Corrie E M Gidding
- Neuro-Oncology Department, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Steffen Hirsch
- Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg Health Center, Heidelberg, Germany
| | - Pauline Hoarau
- Department of Children and Adolescents Oncology, Gustave Roussy, Villejuif, France
| | - Mette Jorgensen
- Oncology, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Christian Kratz
- Paediatric Haematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Lucie Lafay-Cousin
- Section of Pediatric Hematology Oncology and Bone Marrow Transplantation, Alberta Children's Hospital and Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Angela Mastronuzzi
- Pediatric Hematology/Oncology and Stem Cells Transplatation, Bambino Gesu Pediatric Hospital, Roma, Italy
| | - Lorenza Pastorino
- Department of Oncology, Biology and Genetics, University of Genoa, Genoa, Italy
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg Health Center, Heidelberg, Germany
- Division of Pediatric Neurooncology, DKFZ, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tubingen Institute of Human Genetics, Tubingen, Germany
| | - Miriam Jane Smith
- Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Pia Vahteristo
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Medical and Clinical Genetics, Applied Tumor Genomics Research Program, University of Helsinki, Helsinki, Finland
| | - Roseline Vibert
- Department of Genetics, PSL Research University, Institute Curie, Paris, France
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
- Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Nicolas Waespe
- CANSEARCH Research Platform, Depatment of pediatric oncology and hematology, University of Geneva, Geneva, Switzerland
- Childhood Cancer Research Group, Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Ingrid M Winship
- Department of Medicine, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - D Gareth Evans
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester Academic Health Science Centre, School of Biological Sciences,Division of Evolution, Infection and Genomics, The University of Manchester, Manchester, UK
| | - Laurence Brugieres
- Team "Genomics and Oncogenesis of pediatric Brain Tumors"-Paris Saclay University, INSERM U981, VILLEJUIF, France
- Department of Children and Adolescents Oncology, Gustave Roussy Institute, Villejuif, France
| |
Collapse
|
14
|
Hill RM, Plasschaert SLA, Timmermann B, Dufour C, Aquilina K, Avula S, Donovan L, Lequin M, Pietsch T, Thomale U, Tippelt S, Wesseling P, Rutkowski S, Clifford SC, Pfister SM, Bailey S, Fleischhack G. Relapsed Medulloblastoma in Pre-Irradiated Patients: Current Practice for Diagnostics and Treatment. Cancers (Basel) 2021; 14:126. [PMID: 35008290 PMCID: PMC8750207 DOI: 10.3390/cancers14010126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023] Open
Abstract
Relapsed medulloblastoma (rMB) accounts for a considerable, and disproportionate amount of childhood cancer deaths. Recent advances have gone someway to characterising disease biology at relapse including second malignancies that often cannot be distinguished from relapse on imaging alone. Furthermore, there are now multiple international early-phase trials exploring drug-target matches across a range of high-risk/relapsed paediatric tumours. Despite these advances, treatment at relapse in pre-irradiated patients is typically non-curative and focuses on providing life-prolonging and symptom-modifying care that is tailored to the needs and wishes of the individual and their family. Here, we describe the current understanding of prognostic factors at disease relapse such as principal molecular group, adverse molecular biology, and timing of relapse. We provide an overview of the clinical diagnostic process including signs and symptoms, staging investigations, and molecular pathology, followed by a summary of treatment modalities and considerations. Finally, we summarise future directions to progress understanding of treatment resistance and the biological mechanisms underpinning early therapy-refractory and relapsed disease. These initiatives include development of comprehensive and collaborative molecular profiling approaches at relapse, liquid biopsies such as cerebrospinal fluid (CSF) as a biomarker of minimal residual disease (MRD), modelling strategies, and the use of primary tumour material for real-time drug screening approaches.
Collapse
Affiliation(s)
- Rebecca M. Hill
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Sabine L. A. Plasschaert
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Beate Timmermann
- Department of Particle Therapy, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany;
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, 94800 Villejuif, France;
| | - Kristian Aquilina
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK;
| | - Shivaram Avula
- Department of Radiology, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK;
| | - Laura Donovan
- UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Maarten Lequin
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn, 53127 Bonn, Germany;
| | - Ulrich Thomale
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Stephan Tippelt
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| | - Pieter Wesseling
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (S.L.A.P.); (M.L.); (P.W.)
- Department of Pathology, Amsterdam University Medical Centers/VUmc, 1081 HV Amsterdam, The Netherlands
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Steven C. Clifford
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Stefan M. Pfister
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Pediatric Oncology and Hematology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Simon Bailey
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne NE1 7RU, UK; (S.C.C.); (S.B.)
| | - Gudrun Fleischhack
- Department of Pediatrics III, Center for Translational Neuro- and Behavioral Sciences (CTNBS), University Hospital of Essen, 45147 Essen, Germany;
| |
Collapse
|
15
|
Central Nervous System Tumor Classification: An Update on the Integration of Tumor Genetics. Hematol Oncol Clin North Am 2021; 36:1-21. [PMID: 34763992 DOI: 10.1016/j.hoc.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 2016, the World Health Organization Classification of CNS Tumors introduced molecular abnormalities that refined tumor diagnoses. Around this time, the introduction of large scale genetic mutational analyses quickly advanced our knowledge of recurrent abnormalities in disease. In 2017, the C-IMPACT group was established to render expert consensus opinions regarding the application of molecular findings into central nervous system tumor diagnoses. C-IMPACT have presented their recommendations in 7 peer-reviewed publications; this article details those recommendations that are expected to be incorporated into the upcoming fifth edition of the World Health Organization classification.
Collapse
|
16
|
Verkouteren BJA, Cosgun B, Reinders MGHC, Kessler PAWK, Vermeulen RJ, Klaassens M, Lambrechts S, van Rheenen JR, van Geel M, Vreeburg M, Mosterd K. A guideline for the clinical management of basal cell nevus syndrome (Gorlin-Goltz syndrome). Br J Dermatol 2021; 186:215-226. [PMID: 34375441 PMCID: PMC9298899 DOI: 10.1111/bjd.20700] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
The overall objective of this guideline is to provide up-to-date, evidence-based recommendations for the diagnosis and surveillance of all symptoms of children and adults with either basal cell nevus syndrome (BCNS), a clinical suspicion of BCNS, or a parent with BCNS. In the last two groups the guidelines should be followed until the diagnosis of BCNS can be rejected with certainty. The guideline aims to: - Update and expand on the previous guidelines by an appraisal of all relevant literature from January 2011 up to January 2021 - Address important, practical, clinical questions relating to the primary guideline objective - Provide guideline recommendations - Discuss potential developments and future directions.
Collapse
Affiliation(s)
- B J A Verkouteren
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands.,GROW research institute for oncology and developmental biology, Maastricht University, Maastricht, the Netherlands
| | - B Cosgun
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands.,GROW research institute for oncology and developmental biology, Maastricht University, Maastricht, the Netherlands
| | - M G H C Reinders
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands.,GROW research institute for oncology and developmental biology, Maastricht University, Maastricht, the Netherlands
| | - P A W K Kessler
- Department of Cranio-Maxillofacial surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - R J Vermeulen
- Department of Neurology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - M Klaassens
- Department of Paediatrics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - S Lambrechts
- Department of Gynaecology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - J R van Rheenen
- Department of Ophthalmology, St. Anna Hospital, Geldrop, the Netherlands
| | - M van Geel
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands.,GROW research institute for oncology and developmental biology, Maastricht University, Maastricht, the Netherlands.,Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - M Vreeburg
- Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - K Mosterd
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands.,GROW research institute for oncology and developmental biology, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
17
|
Hedgehog/GLI Signaling Pathway: Transduction, Regulation, and Implications for Disease. Cancers (Basel) 2021; 13:cancers13143410. [PMID: 34298625 PMCID: PMC8304605 DOI: 10.3390/cancers13143410] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The Hedgehog/GLI (Hh/GLI) pathway plays a major role during development and it is commonly dysregulated in many diseases, including cancer. This highly concerted series of ligands, receptors, cytoplasmic signaling molecules, transcription factors, and co-regulators is involved in regulating the biological functions controlled by this pathway. Activation of Hh/GLI in cancer is most often through a non-canonical method of activation, independent of ligand binding. This review is intended to summarize our current understanding of the Hh/GLI signaling, non-canonical mechanisms of pathway activation, its implication in disease, and the current therapeutic strategies targeting this cascade. Abstract The Hh/GLI signaling pathway was originally discovered in Drosophila as a major regulator of segment patterning in development. This pathway consists of a series of ligands (Shh, Ihh, and Dhh), transmembrane receptors (Ptch1 and Ptch2), transcription factors (GLI1–3), and signaling regulators (SMO, HHIP, SUFU, PKA, CK1, GSK3β, etc.) that work in concert to repress (Ptch1, Ptch2, SUFU, PKA, CK1, GSK3β) or activate (Shh, Ihh, Dhh, SMO, GLI1–3) the signaling cascade. Not long after the initial discovery, dysregulation of the Hh/GLI signaling pathway was implicated in human disease. Activation of this signaling pathway is observed in many types of cancer, including basal cell carcinoma, medulloblastoma, colorectal, prostate, pancreatic, and many more. Most often, the activation of the Hh/GLI pathway in cancer occurs through a ligand-independent mechanism. However, in benign disease, this activation is mostly ligand-dependent. The upstream signaling component of the receptor complex, SMO, is bypassed, and the GLI family of transcription factors can be activated regardless of ligand binding. Additional mechanisms of pathway activation exist whereby the entirety of the downstream signaling pathway is bypassed, and PTCH1 promotes cell cycle progression and prevents caspase-mediated apoptosis. Throughout this review, we summarize each component of the signaling cascade, non-canonical modes of pathway activation, and the implications in human disease, including cancer.
Collapse
|
18
|
Stachyra K, Dudzisz-Śledź M, Bylina E, Szumera-Ciećkiewicz A, Spałek MJ, Bartnik E, Rutkowski P, Czarnecka AM. Merkel Cell Carcinoma from Molecular Pathology to Novel Therapies. Int J Mol Sci 2021; 22:6305. [PMID: 34208339 PMCID: PMC8231245 DOI: 10.3390/ijms22126305] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Merkel cell carcinoma (MCC) is an uncommon and highly aggressive skin cancer. It develops mostly within chronically sun-exposed areas of the skin. MCPyV is detected in 60-80% of MCC cases as integrated within the genome and is considered a major risk factor for MCC. Viral negative MCCs have a high mutation burden with a UV damage signature. Aberrations occur in RB1, TP53, and NOTCH genes as well as in the PI3K-AKT-mTOR pathway. MCC is highly immunogenic, but MCC cells are known to evade the host's immune response. Despite the characteristic immunohistological profile of MCC, the diagnosis is challenging, and it should be confirmed by an experienced pathologist. Sentinel lymph node biopsy is considered the most reliable staging tool to identify subclinical nodal disease. Subclinical node metastases are present in about 30-50% of patients with primary MCC. The basis of MCC treatment is surgical excision. MCC is highly radiosensitive. It becomes chemoresistant within a few months. MCC is prone to recurrence. The outcomes in patients with metastatic disease are poor, with a historical 5-year survival of 13.5%. The median progression-free survival is 3-5 months, and the median overall survival is ten months. Currently, immunotherapy has become a standard of care first-line therapy for advanced MCC.
Collapse
Affiliation(s)
- Karolina Stachyra
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Monika Dudzisz-Śledź
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
| | - Elżbieta Bylina
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
- Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Diagnostics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 00-791 Warsaw, Poland
| | - Mateusz J. Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (K.S.); (M.D.-Ś.); (E.B.); (M.J.S.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
19
|
Metastatic Basal Cell Carcinoma of the Skin: A Comprehensive Literature Review, Including Advances in Molecular Therapeutics. Adv Anat Pathol 2020; 27:331-353. [PMID: 32618586 DOI: 10.1097/pap.0000000000000267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Basal cell carcinoma (BCC) of the skin is the most common type of malignant human tumor. In Europe, the incidence of BCC ranges from 44.6 to 128 cases per 100,000 inhabitants annually, whereas in the United States, the yearly incidence rate ranges between 500 and 1500. The global incidence has been calculated to be as high as 10 million cases of BCC per year. There are 2 main clinical patterns of BCC-the familial BCC in basal cell nevus syndrome and sporadic BCC. The etiology of cutaneous BCC is usually the result of the interaction between solar ultraviolet radiation and genetic factors. Somatic or germline mutations in the effector components of the hedgehog signaling pathway (ie, PTCH1, PTCH2, SMO or SUFU genes) are responsible for ∼90% of the cases of both sporadic and familial BCC, all causing a constitutive activation of the hedgehog pathway. Cutaneous BCC very rarely metastasizes, and diagnosis in metastatic sites can be very difficult. Metastatic BCC has weakly effective therapeutic options with a poor prognosis until few years ago. In 2012, small-molecule therapies, involving inactivation of the hedgehog signaling pathway, and capable of reducing tumor growth and progression have been introduced into clinical practice for advanced (locally advanced or metastatic) BCC. We performed a comprehensive literature review on metastatic BCC and found at least 915 cases reported to date. In addition, we extensively discussed the differential diagnosis of metastatic BCC, and outlined the advances in clinical therapeutics involving these small molecules.
Collapse
|
20
|
Hedgehog Pathway Alterations Downstream of Patched-1 Are Common in Infundibulocystic Basal Cell Carcinoma. Am J Dermatopathol 2020; 43:266-272. [PMID: 32796174 DOI: 10.1097/dad.0000000000001746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT The infundibulocystic variant of basal cell carcinoma (BCC) is characterized histologically by anastamosing strands of basaloid epithelium with associated small infundibular-type cysts. Since its first description in 1987, this rare entity has generated considerable controversy with some authors classifying it as a benign follicular neoplasm rather than a BCC subtype. Prior studies aiming to settle this issue using immunohistochemical analysis reached opposite conclusions. The defining feature of BCC is activation of the Hedgehog signaling pathway, and mutations in Patched-1 (PTCH1) are the most common molecular finding in both sporadic and inherited forms of BCC. Mutations in other downstream components including Smoothened (SMO) and Suppressor of Fused (SUFU) also occur, but are much less common. Here, we report a molecular genetic analysis of a small series of infundibulocystic BCC using a next-generation DNA sequencing platform. All 4 cases harbored mutations or other genetic alterations in components of the Hedgehog pathway, supporting the classification of this entity as a BCC variant. Interestingly, these tumors were enriched for genetic alterations downstream of PTCH1, involving SUFU, SMO, GLI1, and GLI2. This observation was of particular interest given that rare kindreds of the Multiple Hereditary Infundibulocystic BCC syndrome (MHIBCC), which is related, but possibly distinct from the nevoid BCC syndrome, harbored mutations in SUFU. Our results support the classification of the infundibulocystic variant as a subtype of BCC, and suggest that the level at which genetic alterations occur within the Hedgehog pathway may be an important determinant of the morphologic features in BCC.
Collapse
|
21
|
Peris K, Fargnoli MC, Garbe C, Kaufmann R, Bastholt L, Seguin NB, Bataille V, Marmol VD, Dummer R, Harwood CA, Hauschild A, Höller C, Haedersdal M, Malvehy J, Middleton MR, Morton CA, Nagore E, Stratigos AJ, Szeimies RM, Tagliaferri L, Trakatelli M, Zalaudek I, Eggermont A, Grob JJ. Diagnosis and treatment of basal cell carcinoma: European consensus–based interdisciplinary guidelines. Eur J Cancer 2019; 118:10-34. [DOI: 10.1016/j.ejca.2019.06.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 10/26/2022]
|
22
|
Askaner G, Lei U, Bertelsen B, Venzo A, Wadt K. Novel SUFU Frameshift Variant Leading to Meningioma in Three Generations in a Family with Gorlin Syndrome. Case Rep Genet 2019; 2019:9650184. [PMID: 31485359 PMCID: PMC6702821 DOI: 10.1155/2019/9650184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 07/01/2019] [Indexed: 01/31/2023] Open
Abstract
Gorlin syndrome is mainly caused by pathogenic germline variants in the tumour suppressor genes PTCH1 and SUFU, both regulatory genes in the hedgehog pathway. However, the phenotypes of patients with PTCH1 and SUFU pathogenic variants seem to differ. We present a family with a frameshift variant in the SUFU gene c.954del, p.Asn319Thrfs∗42 leading to meningiomas and multiple basal cell-carcinomas.
Collapse
Affiliation(s)
- Gustav Askaner
- Department of Plastic Surgery, Hospital South West Jutland, Esbjerg, Denmark
| | - Ulrikke Lei
- Department of Dermatology and Allergy, Gentofte Hospital and Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Birgitte Bertelsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Alessandro Venzo
- Department of Plastic Surgery and Burns Treatment, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Karin Wadt
- Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
23
|
Moreira A, Kirchberger M, Toussaint F, Erdmann M, Schuler G, Heinzerling L. Effective anti-programmed death-1 therapy in a SUFU
-mutated patient with Gorlin-Goltz syndrome. Br J Dermatol 2018; 179:747-749. [DOI: 10.1111/bjd.16607] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 12/15/2022]
Affiliation(s)
- A. Moreira
- Department of Dermatology; Universitätsklinikum Erlangen; Friedrich-Alexander-University Erlangen-Nuremberg (FAU); 91054 Erlangen Germany
| | - M.C. Kirchberger
- Department of Dermatology; Universitätsklinikum Erlangen; Friedrich-Alexander-University Erlangen-Nuremberg (FAU); 91054 Erlangen Germany
| | - F. Toussaint
- Department of Dermatology; Universitätsklinikum Erlangen; Friedrich-Alexander-University Erlangen-Nuremberg (FAU); 91054 Erlangen Germany
| | - M. Erdmann
- Department of Dermatology; Universitätsklinikum Erlangen; Friedrich-Alexander-University Erlangen-Nuremberg (FAU); 91054 Erlangen Germany
| | - G. Schuler
- Department of Dermatology; Universitätsklinikum Erlangen; Friedrich-Alexander-University Erlangen-Nuremberg (FAU); 91054 Erlangen Germany
| | - L. Heinzerling
- Department of Dermatology; Universitätsklinikum Erlangen; Friedrich-Alexander-University Erlangen-Nuremberg (FAU); 91054 Erlangen Germany
| |
Collapse
|