1
|
Moore ME, Williams E, Pelkey L, Courville EL. A comparison of WHO-5 and ICC classifications in a series of myeloid neoplasms, considerations for hematopathologists and molecular pathologists. Cancer Genet 2024; 286-287:25-28. [PMID: 38964162 DOI: 10.1016/j.cancergen.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/19/2024] [Accepted: 06/15/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVES The International Consensus Classification (ICC) and 5th Edition of the World Health Organization Classification (WHO-5) made substantive updates to the classification of myeloid neoplasms. This study compares the systems in a series of myeloid neoplasms with increased blasts, analyzing implications for diagnostic workflow and reporting. METHODS Bone marrow biopsies categorized as myelodysplastic syndrome with excess blasts (MDS-EB) or acute myeloid leukemia (AML) by WHO-R4 were identified. Results of morphology review, karyotype, fluorescence in situ hybridization, and next-generation sequencing were compiled. Cases were retrospectively re-classified by WHO-5 and ICC. RESULTS 46 cases were reviewed. 28 cases (61 %) had ≥20 % blasts, with the remaining cases having 5-19.5 % blasts. The most common differences in classification were 1) the designation of MDS versus MDS/AML (10/46, 22 %) for cases with 10-19 % blasts and 2) the ICC's designation of TP53 variants as a separate classifier for AML (8/46, 17 %). Bi-allelic/multi-hit TP53 alterations were identified in 15 cases (33 %). Variants of potential germline significance were identified in 29 (63 %) cases. CONCLUSIONS While terminology differences between WHO-5 and ICC exist, both systems invoke similar opportunities for improved reporting: standardized classification of pathogenic variants (notably TP53), streamlined systems to evaluate for potential germline variants, and integrated reporting of morphologic and genetic data.
Collapse
Affiliation(s)
- Margaret E Moore
- University of Virginia, Department of Pathology and Laboratory Medicine, United States.
| | - Eli Williams
- University of Virginia, Department of Pathology and Laboratory Medicine, United States
| | - Lauren Pelkey
- University of Virginia, Department of Pathology and Laboratory Medicine, United States
| | - Elizabeth L Courville
- University of Virginia, Department of Pathology and Laboratory Medicine, United States
| |
Collapse
|
2
|
Abreu RBV, Pereira AS, Rosa MN, Ashton-Prolla P, Silva VAO, Melendez ME, Palmero EI. Functional evaluation of germline TP53 variants identified in Brazilian families at-risk for Li-Fraumeni syndrome. Sci Rep 2024; 14:17187. [PMID: 39060302 PMCID: PMC11282216 DOI: 10.1038/s41598-024-67810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Germline TP53 pathogenic variants can lead to a cancer susceptibility syndrome known as Li-Fraumeni (LFS). Variants affecting its activity can drive tumorigenesis altering p53 pathways and their identification is crucial for assessing individual risk. This study explored the functional impact of TP53 missense variants on its transcription factor activity. We selected seven TP53 missense variants (c.129G > C, c.320A > G, c.417G > T, c.460G > A, c,522G > T, c.589G > A and c.997C > T) identified in Brazilian families at-risk for LFS. Variants were created through site-directed mutagenesis and transfected into SK-OV-3 cells to assess their transcription activation capabilities. Variants K139N and V197M displayed significantly reduced transactivation activity in a TP53-dependent luciferase reporter assay. Additionally, K139N negatively impacted CDKN1A and MDM2 expression and had a limited effect on GADD45A and PMAIP1 upon irradiation-induced DNA damage. Variant V197M demonstrated functional impact in all target genes evaluated and loss of Ser15 phosphorylation. K139N and V197M variants presented a reduction of p21 levels after irradiation. Our data show that K139N and V197M negatively impact p53 functions, supporting their classification as pathogenic variants. This underscores the significance of conducting functional studies on germline TP53 missense variants classified as variants of uncertain significance to ensure proper management of LFS-related cancer risks.
Collapse
Affiliation(s)
- Renata B V Abreu
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba, Brazil
| | - Ariane S Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Patricia Ashton-Prolla
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Viviane A O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Department of Pathology, School of Medicine, Federal University of Bahia, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | - Matias E Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Edenir I Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.
- Department of Genetics, Brazilian National Cancer Institute, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Tam B, Lagniton PNP, Da Luz M, Zhao B, Sinha S, Lei CL, Wang SM. Comprehensive classification of TP53 somatic missense variants based on their impact on p53 structural stability. Brief Bioinform 2024; 25:bbae400. [PMID: 39140857 PMCID: PMC11323084 DOI: 10.1093/bib/bbae400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Somatic variation is a major type of genetic variation contributing to human diseases including cancer. Of the vast quantities of somatic variants identified, the functional impact of many somatic variants, in particular the missense variants, remains unclear. Lack of the functional information prevents the translation of rich variation data into clinical applications. We previously developed a method named Ramachandran Plot-Molecular Dynamics Simulations (RP-MDS), aiming to predict the function of germline missense variants based on their effects on protein structure stability, and successfully applied to predict the deleteriousness of unclassified germline missense variants in multiple cancer genes. We hypothesized that regardless of their different genetic origins, somatic missense variants and germline missense variants could have similar effects on the stability of their affected protein structure. As such, the RP-MDS method designed for germline missense variants should also be applicable to predict the function of somatic missense variants. In the current study, we tested our hypothesis by using the somatic missense variants in TP53 as a model. Of the 397 somatic missense variants analyzed, RP-MDS predicted that 195 (49.1%) variants were deleterious as they significantly disturbed p53 structure. The results were largely validated by using a p53-p21 promoter-green fluorescent protein (GFP) reporter gene assay. Our study demonstrated that deleterious somatic missense variants can be identified by referring to their effects on protein structural stability.
Collapse
Affiliation(s)
- Benjamin Tam
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | | | - Mariano Da Luz
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - Bojin Zhao
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - Siddharth Sinha
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - Chon Lok Lei
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| | - San Ming Wang
- Faculty of Health Sciences, University of Macau, University Avenue, Taipa, Macau SAR 999078, China
| |
Collapse
|
4
|
Christowitz C, Olivier DW, Schneider JW, Kotze MJ, Engelbrecht AM. Incorporating functional genomics into the pathology-supported genetic testing framework implemented in South Africa: A future view of precision medicine for breast carcinomas. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108492. [PMID: 38631437 DOI: 10.1016/j.mrrev.2024.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/25/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
A pathology-supported genetic testing (PSGT) framework was established in South Africa to improve access to precision medicine for patients with breast carcinomas. Nevertheless, the frequent identification of variants of uncertain significance (VUSs) with the use of genome-scale next-generation sequencing has created a bottleneck in the return of results to patients. This review highlights the importance of incorporating functional genomics into the PSGT framework as a proposed initiative. Here, we explore various model systems and experimental methods available for conducting functional studies in South Africa to enhance both variant classification and clinical interpretation. We emphasize the distinct advantages of using in vitro, in vivo, and translational ex vivo models to improve the effectiveness of precision oncology. Moreover, we highlight the relevance of methodologies such as protein modelling and structural bioinformatics, multi-omics, metabolic activity assays, flow cytometry, cell migration and invasion assays, tube-formation assays, multiplex assays of variant effect, and database mining and machine learning models. The selection of the appropriate experimental approach largely depends on the molecular mechanism of the gene under investigation and the predicted functional effect of the VUS. However, before making final decisions regarding the pathogenicity of VUSs, it is essential to assess the functional evidence and clinical outcomes under current variant interpretation guidelines. The inclusion of a functional genomics infrastructure within the PSGT framework will significantly advance the reclassification of VUSs and enhance the precision medicine pipeline for patients with breast carcinomas in South Africa.
Collapse
Affiliation(s)
- Claudia Christowitz
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Daniel W Olivier
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa; Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| | - Johann W Schneider
- Division of Anatomical Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town 7505, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa; National Health Laboratory Service, Tygerberg Hospital, Cape Town 7505, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa; Department of Global Health, African Cancer Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7505, South Africa
| |
Collapse
|
5
|
Butz H, Bozsik A, Grolmusz V, Szőcs E, Papp J, Patócs A. Challenging interpretation of germline TP53 variants based on the experience of a national comprehensive cancer centre. Sci Rep 2023; 13:14259. [PMID: 37653074 PMCID: PMC10471726 DOI: 10.1038/s41598-023-41481-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023] Open
Abstract
TP53 variant interpretation is still challenging, especially in patients with attenuated Li-Fraumeni syndrome (LFS). We investigated the prevalence of pathogenic/likely pathogenic (P/LP) variants and LFS disease in the Hungarian population of cancer patients. By testing 893 patients with multiplex or familial cancer, we identified and functionally characterized novel splice variants of TP53 helping accurate variant classification. The differences among various semi-automated interpretation platforms without manual curation highlight the importance of focused interpretation as the automatic classification systems do not apply the TP53-specific criteria. The predicted frequency of the TP53 P/LP variants in Hungary is 0.3 per million which most likely underestimates the real prevalence. The higher detection rate of disease-causing variants in patients with attenuated LFS phenotype compared to the control population (OR 12.5; p < 0.0001) may raise the potential benefit of the TP53 genetic testing as part of the hereditary cancer panels of patients with multiple or familial cancer even when they do not meet Chompret criteria. Tumours developed at an earlier age in phenotypic LFS patients compared to the attenuated LFS patients which complicates genetic counselling as currently there are no different recommendations in surveillance protocols for LFS, phenotypic LFS, and attenuated LFS patients.
Collapse
Affiliation(s)
- Henriett Butz
- Department of Molecular Genetics and the National Tumour Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Budapest, Hungary.
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Center, Budapest, Hungary.
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, Budapest, Hungary.
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary.
| | - Anikó Bozsik
- Department of Molecular Genetics and the National Tumour Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Budapest, Hungary
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Vince Grolmusz
- Department of Molecular Genetics and the National Tumour Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Budapest, Hungary
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Erika Szőcs
- Department of Oncology Biobank, National Institute of Oncology, Comprehensive Cancer Center, Budapest, Hungary
| | - János Papp
- Department of Molecular Genetics and the National Tumour Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Budapest, Hungary
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, Budapest, Hungary
| | - Attila Patócs
- Department of Molecular Genetics and the National Tumour Biology Laboratory, National Institute of Oncology, Comprehensive Cancer Center, Budapest, Hungary
- Hereditary Tumours Research Group, Eötvös Loránd Research Network, Budapest, Hungary
- Department of Laboratory Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Ho TLF, Lee MY, Goh HC, Ng GYN, Lee JJH, Kannan S, Lim YT, Zhao T, Lim EKH, Phua CZJ, Lee YF, Lim RYX, Ng PJH, Yuan J, Chan DKH, Lieske B, Chong CS, Lee KC, Lum J, Cheong WK, Yeoh KG, Tan KK, Sobota RM, Verma CS, Lane DP, Tam WL, Venkitaraman AR. Domain-specific p53 mutants activate EGFR by distinct mechanisms exposing tissue-independent therapeutic vulnerabilities. Nat Commun 2023; 14:1726. [PMID: 36977662 PMCID: PMC10050071 DOI: 10.1038/s41467-023-37223-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Mis-sense mutations affecting TP53 promote carcinogenesis both by inactivating tumor suppression, and by conferring pro-carcinogenic activities. We report here that p53 DNA-binding domain (DBD) and transactivation domain (TAD) mis-sense mutants unexpectedly activate pro-carcinogenic epidermal growth factor receptor (EGFR) signaling via distinct, previously unrecognized molecular mechanisms. DBD- and TAD-specific TP53 mutants exhibited different cellular localization and induced distinct gene expression profiles. In multiple tissues, EGFR is stabilized by TAD and DBD mutants in the cytosolic and nuclear compartments respectively. TAD mutants promote EGFR-mediated signaling by enhancing EGFR interaction with AKT via DDX31 in the cytosol. Conversely, DBD mutants maintain EGFR activity in the nucleus, by blocking EGFR interaction with the phosphatase SHP1, triggering c-Myc and Cyclin D1 upregulation. Our findings suggest that p53 mutants carrying gain-of-function, mis-sense mutations affecting two different domains form new protein complexes that promote carcinogenesis by enhancing EGFR signaling via distinctive mechanisms, exposing clinically relevant therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Teresa Lai Fong Ho
- Disease Intervention Technology Lab (DITL), Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - May Yin Lee
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hui Chin Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Jane Jia Hui Lee
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yan Ting Lim
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tianyun Zhao
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Edwin Kok Hao Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yi Fei Lee
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rebecca Yi Xuan Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Perry Jun Hao Ng
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ju Yuan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Dedrick Kok Hong Chan
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Bettina Lieske
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Choon Seng Chong
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kuok Chung Lee
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Jeffrey Lum
- Department of Pathology, National University Health System, Singapore, Singapore
| | - Wai Kit Cheong
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Khay Guan Yeoh
- University Surgical Cluster, National University Health System, Singapore, Singapore
| | - Ker Kan Tan
- Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- SingMass - National Mass Spectrometry Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
- Department of Biological Science, National University of Singapore, Singapore, Singapore
| | - David P Lane
- Disease Intervention Technology Lab (DITL), Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Wai Leong Tam
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Biological Science, Nanyang Technological University, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ashok R Venkitaraman
- Disease Intervention Technology Lab (DITL), Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Variants of uncertain significance in the era of next-generation sequencing. J Am Assoc Nurse Pract 2022; 34:1018-1021. [PMID: 35731603 DOI: 10.1097/jxx.0000000000000745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Next-generation sequencing (NGS) is now widely used in diagnosing rare diseases. However, it has some limitations, such as variants of uncertain significance (VUS). This can present difficulties even for nurse practitioners involved in clinical genetics. We present three cases from our clinical practice: two targeted panel testing and one exome sequencing. Whole blood samples were collected and sent for NGS analysis. In case 1, a VUS was found in the LITAF gene, which is associated with autosomal dominant Charcot-Marie-Tooth disease type 1C. In case 2, a VUS was reported in the MEFV gene, which is associated with autosomal recessive and autosomal dominant familial Mediterranean fever. In these cases, the reported VUS corresponded to the clinical diagnosis. In case 3, two variants in the heterozygous state were found in the ATP7B gene, which is associated with Wilson disease, and the disorder was later clinically recognized. According to the published guidelines, VUSs should not be discussed as a cause for an observed genetic condition. Nevertheless, if the reported variant is in a gene associated with the clinically diagnosed disorder, and there is a strong genotype-phenotype correlation, it could be suggestive of the etiological role of this variant.
Collapse
|
8
|
Tallis E, Scollon S, Ritter DI, Plon SE. Evolution of germline TP53 variant classification in children with cancer. Cancer Genet 2022; 264-265:29-32. [PMID: 35306447 PMCID: PMC9133135 DOI: 10.1016/j.cancergen.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022]
Abstract
Li-Fraumeni syndrome, caused by germline pathogenic variants in TP53, results in susceptibility to multiple cancers. Variants of uncertain significance (VUS) and reclassification of variants over time pose management concerns given improved survival with cancer surveillance for LFS patients. We describe the experience of TP53 variant reclassification at a pediatric cancer center. METHODS We reviewed medical records (2010-2019) of 756 patients seen in Texas Children's Cancer Genetics Clinic. We noted initial TP53 classification and any reclassifications. We then classified TP53 variants following ClinGen TP53 variant curation expert panel recommendations using data from ClinVar, medical literature and IARC database. RESULTS Of 234 patients tested for TP53, 27 (11.5%) reports contained pathogenic/likely pathogenic (P/LP) variants and 7 (3)% contained VUS. By January 2022, 4 of 6 unique VUS and 2 of 16 unique P/LP variants changed interpretations in ClinVar. Reinterpretation of these 4 VUS in ClinVar matched clinical decision at the time of initial report. Applying TP53 VCEP specifications classified 3 VUS to P/LP/benign, and one pathogenic variant to likely benign. CONCLUSIONS Planned review of variant significance is essential, especially for patients with high probability of LFS.
Collapse
Affiliation(s)
- E Tallis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - S Scollon
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, United States
| | - D I Ritter
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, United States
| | - S E Plon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States; Texas Children's Cancer Center, Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
9
|
Ben-Cohen G, Doffe F, Devir M, Leroy B, Soussi T, Rosenberg S. TP53_PROF: a machine learning model to predict impact of missense mutations in TP53. Brief Bioinform 2022; 23:6510957. [PMID: 35043155 PMCID: PMC8921628 DOI: 10.1093/bib/bbab524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 11/27/2022] Open
Abstract
Correctly identifying the true driver mutations in a patient’s tumor is a major challenge in precision oncology. Most efforts address frequent mutations, leaving medium- and low-frequency variants mostly unaddressed. For TP53, this identification is crucial for both somatic and germline mutations, with the latter associated with the Li-Fraumeni syndrome (LFS), a multiorgan cancer predisposition. We present TP53_PROF (prediction of functionality), a gene specific machine learning model to predict the functional consequences of every possible missense mutation in TP53, integrating human cell- and yeast-based functional assays scores along with computational scores. Variants were labeled for the training set using well-defined criteria of prevalence in four cancer genomics databases. The model’s predictions provided accuracy of 96.5%. They were validated experimentally, and were compared to population data, LFS datasets, ClinVar annotations and to TCGA survival data. Very high accuracy was shown through all methods of validation. TP53_PROF allows accurate classification of TP53 missense mutations applicable for clinical practice. Our gene specific approach integrated machine learning, highly reliable features and biological knowledge, to create an unprecedented, thoroughly validated and clinically oriented classification model. This approach currently addresses TP53 mutations and will be applied in the future to other important cancer genes.
Collapse
Affiliation(s)
- Gil Ben-Cohen
- Corresponding authors: Gil Ben Cohen, Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, The Wohl Institute for Translational Medicine. Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel. Tel.: +972549410946. E-mail: ; Shai Rosenberg, Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, The Wohl Institute for Translational Medicine. Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel. Tel.: 972-2-6776289. E-mail:
| | - Flora Doffe
- INSERM UMR 1186, Integrative Tumor Immunology and Immunotherapy, Gustave Roussy, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94805 Villejuif, France
| | - Michal Devir
- Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
- The Wohl Institute for Translational Medicine, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel
| | - Bernard Leroy
- Sorbonne Université, UPMC Univ Paris 06, F- 75005 Paris, France
| | | | - Shai Rosenberg
- Corresponding authors: Gil Ben Cohen, Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, The Wohl Institute for Translational Medicine. Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel. Tel.: +972549410946. E-mail: ; Shai Rosenberg, Gaffin Center for Neuro-Oncology, Sharett Institute for Oncology, The Wohl Institute for Translational Medicine. Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Israel. Tel.: 972-2-6776289. E-mail:
| |
Collapse
|
10
|
Huszno J, Pigłowski W, Mazur M, Pamuła-Piłat J, Zajkowicz A, Kierzkowska AF, Wojciechowska MO. BRCA1/BRCA2 variants of uncertain significance in clinical practice: A case report. Mol Clin Oncol 2021; 15:222. [PMID: 34548921 DOI: 10.3892/mco.2021.2385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 05/11/2021] [Indexed: 11/05/2022] Open
Abstract
The influence of BRCA1/2 variants of uncertain significance (VUSs) on the cancer risk and their association with the response to treatment is uncertain. The aim of the present study was to evaluate the role of BRCA VUS in patients with breast cancer. A total of two cases of breast cancer patients with the BRCA VUS were described. The complete coding sequence of BRCA1/2 genes was analyzed from the genomic DNA material by next generation sequencing on the Ion Torrent platform. The presence of c.3454G>A (p.Asp1152Asn) VUS in the BRCA1 gene was reported in a 64-year-old woman with invasive breast carcinoma. The characteristics of the breast tumors were the following: moderately differentiated-intermediate grade (NG-2 G-2), HER2 (+), estrogen receptor (ER) (+++), progesterone receptor (PR) (+++), luminal A subtype and pT2 N1a Mx. The second detected VUS was the c.2374T>C (p.Tyr792His) variant in the BRCA2 gene. This variant was reported in a 33-year-old woman who was diagnosed with right breast cancer (cT2N1M0). The invasive breast carcinoma was characterized as follows: NG-2 G-2, ER (+++), PR (+++), Ki-67 10%, HER2 (+++) and luminal B subtype. The data demonstrated that patients with VUSs should be managed based on their family history of cancer and clinicopathological characteristics. The clinical significance of the VUS in BRCA1/2 may change over time and reclassification of the variant to 'pathogenic' or 'benign' should be undertaken. Patients with VUS should be followed up regularly.
Collapse
Affiliation(s)
- Joanna Huszno
- Genetic Outpatient Clinic, Maria Sklodowska-Curie, National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland
| | - Wojciech Pigłowski
- The Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie, National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland.,Department of Tumor Pathology, Maria Sklodowska-Curie, National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland
| | - Magdalena Mazur
- The Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie, National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland
| | - Jolanta Pamuła-Piłat
- The Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie, National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland
| | - Artur Zajkowicz
- The Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie, National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland
| | - Anna Fiszer Kierzkowska
- The Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie, National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland
| | - Małgorzata Oczko Wojciechowska
- The Department of Genetic and Molecular Diagnostics of Cancer, Maria Sklodowska-Curie, National Research Institute of Oncology, Gliwice Branch, 44-100 Gliwice, Poland
| |
Collapse
|
11
|
Paduano F, Fabiani F, Colao E, Trapasso F, Perrotti N, Barbieri V, Baudi F, Iuliano R. Case Report: Identification of a Novel Pathogenic Germline TP53 Variant in a Family With Li-Fraumeni Syndrome. Front Genet 2021; 12:734809. [PMID: 34539758 PMCID: PMC8440986 DOI: 10.3389/fgene.2021.734809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/02/2021] [Indexed: 11/23/2022] Open
Abstract
Li–Fraumeni syndrome (LFS) is an inherited autosomal dominant disease characterized by a predisposition to many cancers. Germline pathogenic variants in TP53 are primarily responsible for LFS. By performing a targeted sequencing panel in a proband with liver carcinoma having a deceased son affected by osteosarcoma, we found the novel heterozygous frameshift variant c.645del (p.Ser215Argfs*32) in the TP53 gene. This variant co-segregated with typical LFS cancers in the family pedigree, consistent with the pathogenicity of this novel and previously undescribed TP53 variant.
Collapse
Affiliation(s)
- Francesco Paduano
- Medical Genetics Unit, University "Magna Graecia", Catanzaro, Italy.,Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy.,Tecnologica Research Institute and Marrelli Health, Biomedical Section, Stem Cells and Medical Genetics Units, Crotone, Italy
| | - Fernanda Fabiani
- Medical Genetics Unit, University "Magna Graecia", Catanzaro, Italy
| | - Emma Colao
- Medical Genetics Unit, University "Magna Graecia", Catanzaro, Italy
| | - Francesco Trapasso
- Medical Genetics Unit, University "Magna Graecia", Catanzaro, Italy.,Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Nicola Perrotti
- Medical Genetics Unit, University "Magna Graecia", Catanzaro, Italy.,Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Vito Barbieri
- Medical Oncology Unit, Mater Domini Hospital, Catanzaro, Italy
| | - Francesco Baudi
- Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Rodolfo Iuliano
- Medical Genetics Unit, University "Magna Graecia", Catanzaro, Italy.,Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| |
Collapse
|
12
|
Fortuno C, Pesaran T, Dolinsky J, Yussuf A, McGoldrick K, Tavtigian SV, Goldgar D, Spurdle AB, James PA. An updated quantitative model to classify missense variants in the TP53 gene: A novel multifactorial strategy. Hum Mutat 2021; 42:1351-1361. [PMID: 34273903 DOI: 10.1002/humu.24264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 11/07/2022]
Abstract
Multigene panel testing has led to an increase in the number of variants of uncertain significance identified in the TP53 gene, associated with Li-Fraumeni syndrome. We previously developed a quantitative model for predicting the pathogenicity of P53 missense variants based on the combination of calibrated bioinformatic information and somatic to germline ratio. Here, we extended this quantitative model for the classification of P53 predicted missense variants by adding new pieces of evidence (personal and family history parameters, loss-of-function results, population allele frequency, healthy individual status by age 60, and breast tumor pathology). We also annotated which missense variants might have an effect on splicing based on bioinformatic predictions. This updated model plus annotation led to the classification of 805 variants into a clinically relevant class, which correlated well with existing ClinVar classifications, and resolved a large number of conflicting and uncertain classifications. We propose this model as a reliable approach to TP53 germline variant classification and emphasize its use in contributing to optimize TP53-specific ACMG/AMP guidelines.
Collapse
Affiliation(s)
- Cristina Fortuno
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | - Amal Yussuf
- Ambry Genetics, Aliso Viejo, California, USA
| | | | - Sean V Tavtigian
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - David Goldgar
- Huntsman Cancer Institute and Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Amanda B Spurdle
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Paul A James
- Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
13
|
Funato M, Tsunematsu Y, Yamazaki F, Tamura C, Kumamoto T, Takagi M, Kato S, Sugimura H, Tamura K. Characteristics of Li-Fraumeni Syndrome in Japan; A Review Study by the Special Committee of JSHT. Cancer Sci 2021; 112:2821-2834. [PMID: 33932062 PMCID: PMC8253286 DOI: 10.1111/cas.14919] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 01/25/2023] Open
Abstract
Li-Fraumeni syndrome (LFS) is a hereditary cancer predisposition syndrome, and the majority of patients with LFS have been identified with germline variants in the p53 tumor suppressor (TP53) gene. In the past three decades, considerable case reports of TP53 germline variants have been published in Japan. To the best of our knowledge, there have been no large-scale studies of Japanese patients with LFS. In this study, we aimed to identify Japanese patients with TP53 germline variants and to reveal the characteristics of LFS in Japan. We collected reported cases by reviewing the medical literature and cases diagnosed at the institutions of the authors. We identified 68 individuals from 48 families with TP53 germline pathogenic or likely pathogenic variants. Of the 48 families, 35 (72.9%) had missense variants, most of which were located within the DNA-binding loop. A total of 128 tumors were identified in the 68 affected individuals. The 128 tumor sites were as follows: breast, 25; bones, 16; brain, 12; hematological, 11; soft tissues, 10; stomach, 10; lung, 10; colorectum, 10; adrenal gland, 9; liver, 4; and others, 11. Unique phenotype patterns of LFS were shown in Japan in comparison to those in a large national LFS cohort study in France. Above all, a higher frequency of patients with stomach cancer was observed in Japanese TP53 germline variant carriers. These results may provide useful information for the clinical management of LFS in Japan.
Collapse
Affiliation(s)
- Michinori Funato
- Department of Clinical ResearchNational Hospital OrganizationNagara Medical CenterGifuJapan
| | - Yukiko Tsunematsu
- Department of PediatricsJuntendo University School of MedicineTokyoJapan
| | - Fumito Yamazaki
- Department of Clinical GenomicsNational Cancer Center Research InstituteTokyoJapan
| | - Chieko Tamura
- Department of PediatricsJuntendo University School of MedicineTokyoJapan
- Medical Information & Genetic Counseling DivisionFMC Tokyo ClinicTokyoJapan
| | - Tadashi Kumamoto
- Department of Pediatric OncologyNational Cancer Center HospitalTokyoJapan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental BiologyGraduate SchoolTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shunsuke Kato
- Department of Clinical OncologyJuntendo University Graduate School of MedicineTokyoJapan
| | - Haruhiko Sugimura
- Department of Tumor PathologyHamamatsu University School of MedicineShizuokaJapan
| | - Kazuo Tamura
- Division of Genetic MedicineMaster of ScienceGraduate School of Science and Engineering ResearchKindai UniversityHigashiosakaJapan
| |
Collapse
|
14
|
Fortuno C, Lee K, Olivier M, Pesaran T, Mai PL, de Andrade KC, Attardi LD, Crowley S, Evans DG, Feng BJ, Major Foreman AK, Frone MN, Huether R, James PA, McGoldrick K, Mester J, Seifert BA, Slavin TP, Witkowski L, Zhang L, Plon SE, Spurdle AB, Savage SA. Specifications of the ACMG/AMP variant interpretation guidelines for germline TP53 variants. Hum Mutat 2021; 42:223-236. [PMID: 33300245 PMCID: PMC8374922 DOI: 10.1002/humu.24152] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022]
Abstract
Germline pathogenic variants in TP53 are associated with Li-Fraumeni syndrome, a cancer predisposition disorder inherited in an autosomal dominant pattern associated with a high risk of malignancy, including early-onset breast cancers, sarcomas, adrenocortical carcinomas, and brain tumors. Intense cancer surveillance for individuals with TP53 germline pathogenic variants is associated with reduced cancer-related mortality. Accurate and consistent classification of germline variants across clinical and research laboratories is important to ensure appropriate cancer surveillance recommendations. Here, we describe the work performed by the Clinical Genome Resource TP53 Variant Curation Expert Panel (ClinGen TP53 VCEP) focused on specifying the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP) guidelines for germline variant classification to the TP53 gene. Specifications were developed for 20 ACMG/AMP criteria, while nine were deemed not applicable. The original strength level for the 10 criteria was also adjusted due to current evidence. Use of TP53-specific guidelines and sharing of clinical data among experts and clinical laboratories led to a decrease in variants of uncertain significance from 28% to 12% compared with the original guidelines. The ClinGen TP53 VCEP recommends the use of these TP53-specific ACMG/AMP guidelines as the standard strategy for TP53 germline variant classification.
Collapse
Affiliation(s)
- Cristina Fortuno
- QIMR Berghofer Medical Research Institute, Brisbane City, Australia, AUS
| | - Kristy Lee
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Phuong L. Mai
- Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kelvin C. de Andrade
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Laura D. Attardi
- Departments of Radiation-Oncology and Genetics, Stanford University, Stanford, CA, USA
| | - Stephanie Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | - Megan N. Frone
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | - Paul A. James
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | | | | | - Bryce A. Seifert
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Leora Witkowski
- Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Cambridge, MA, USA
| | - Liying Zhang
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sharon E. Plon
- Department of Pediatrics/Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Amanda B. Spurdle
- QIMR Berghofer Medical Research Institute, Brisbane City, Australia, AUS
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
15
|
Tam B, Sinha S, Wang SM. Combining Ramachandran plot and molecular dynamics simulation for structural-based variant classification: Using TP53 variants as model. Comput Struct Biotechnol J 2020; 18:4033-4039. [PMID: 33363700 PMCID: PMC7744649 DOI: 10.1016/j.csbj.2020.11.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022] Open
Abstract
The wide application of new DNA sequencing technologies is generating vast quantities of genetic variation data at unprecedented speed. Developing methodologies to decode the pathogenicity of the variants is imperatively demanding. We hypothesized that as deleterious variants may function through disturbing structural stability of their affected proteins, information from structural change caused by genetic variants can be used to identify the variants with deleterious effects. In order to measure the structural change for proteins with large size, we designed a method named RP-MDS composed of Ramachandran plot (RP) and Molecular Dynamics Simulation (MDS). Ramachandran plot captures the variant-caused secondary structural change, whereas MDS provides a quantitative measure for the variant-caused globular structural change. We tested the method using variants in TP53 DNA binding domain of 219 residues as the model. In total, RP-MDS identified 23 of 38 (60.5%) TP53 known Pathogenic variants and 17 of 42 (41%) TP53 VUS that caused significant changes of P53 structure. Our study demonstrates that RP-MDS method provides a powerful protein structure-based tool to screen deleterious genetic variants affecting large-size proteins.
Collapse
Affiliation(s)
- Benjamin Tam
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - Siddharth Sinha
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| | - San Ming Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau
| |
Collapse
|