1
|
Functions of Breast Cancer Predisposition Genes: Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23137481. [PMID: 35806485 PMCID: PMC9267387 DOI: 10.3390/ijms23137481] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Approximately 5–10% of all breast cancer (BC) cases are caused by germline pathogenic variants (GPVs) in various cancer predisposition genes (CPGs). The most common contributors to hereditary BC are BRCA1 and BRCA2, which are associated with hereditary breast and ovarian cancer (HBOC). ATM, BARD1, CHEK2, PALB2, RAD51C, and RAD51D have also been recognized as CPGs with a high to moderate risk of BC. Primary and secondary cancer prevention strategies have been established for HBOC patients; however, optimal preventive strategies for most hereditary BCs have not yet been established. Most BC-associated CPGs participate in DNA damage repair pathways and cell cycle checkpoint mechanisms, and function jointly in such cascades; therefore, a fundamental understanding of the disease drivers in such cascades can facilitate the accurate estimation of the genetic risk of developing BC and the selection of appropriate preventive and therapeutic strategies to manage hereditary BCs. Herein, we review the functions of key BC-associated CPGs and strategies for the clinical management in individuals harboring the GPVs of such genes.
Collapse
|
2
|
Chiang J, Chia TH, Yuen J, Shaw T, Li ST, Binte Ishak ND, Chew EL, Chong ST, Chan SH, Ngeow J. Impact of Variant Reclassification in Cancer Predisposition Genes on Clinical Care. JCO Precis Oncol 2022; 5:577-584. [PMID: 34994607 DOI: 10.1200/po.20.00399] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Genetic testing has clinical utility in the management of patients with hereditary cancer syndromes. However, the increased likelihood of encountering a variant of uncertain significance in individuals of non-European descent such as Asians may be challenging to both clinicians and patients. This study aims to evaluate the impact of variant reclassification in an Asian country with variants of uncertain significance reported in cancer predisposition genes. METHODS A retrospective analysis of patients seen at the Cancer Genetics Service at the National Cancer Centre Singapore between February 2014 and March 2020 was conducted. The frequency, direction, and time to variant reclassification were evaluated by comparing the reclassified report against the original report. RESULTS A total of 1,412 variants of uncertain significance were reported in 49.9% (845 of 1,695) of patients. Over 6 years, 6.7% (94 of 1,412) of variants were reclassified. Most variants of uncertain significance (94.1%, 80 of 85) were downgraded to benign or likely benign variant, with a smaller proportion of variants of uncertain significance (5.9%, 5 of 85) upgraded to pathogenic or likely pathogenic variant. Actionable variants of uncertain significance upgrades and pathogenic or likely pathogenic variant downgrades, which resulted in management changes, happened in 31.0% (39 of 126) of patients. The median and mean time taken for reclassification were 1 and 1.62 year(s), respectively. CONCLUSION We propose a clinical guideline to standardize management of patients reported to have variants of uncertain significance. Management should be based on the patient's personal history, family history, and variant interpretation. For clinically relevant or suspicious variants of uncertain significance, follow-up is recommended every 2 years, as actionable reclassifications may happen during this period.
Collapse
Affiliation(s)
- Jianbang Chiang
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Tze Hao Chia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jeanette Yuen
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Tarryn Shaw
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Shao-Tzu Li
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Nur Diana Binte Ishak
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Ee Ling Chew
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Siao Ting Chong
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Sock Hoai Chan
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Joanne Ngeow
- Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore.,Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
3
|
Torabi Dalivandan S, Plummer J, Gayther SA. Risks and Function of Breast Cancer Susceptibility Alleles. Cancers (Basel) 2021; 13:3953. [PMID: 34439109 PMCID: PMC8393346 DOI: 10.3390/cancers13163953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/22/2022] Open
Abstract
Family history remains one of the strongest risk factors for breast cancer. It is well established that women with a first-degree relative affected by breast cancer are twice as likely to develop the disease themselves. Twins studies indicate that this is most likely due to shared genetics rather than shared epidemiological/lifestyle risk factors. Linkage and targeted sequencing studies have shown that rare high- and moderate-penetrance germline variants in genes involved in the DNA damage response (DDR) including BRCA1, BRCA2, PALB2, ATM, and TP53 are responsible for a proportion of breast cancer cases. However, breast cancer is a heterogeneous disease, and there is now strong evidence that different risk alleles can predispose to different subtypes of breast cancer. Here, we review the associations between the different genes and subtype-specificity of breast cancer based on the most comprehensive genetic studies published. Genome-wide association studies (GWAS) have also been used to identify an additional hereditary component of breast cancer, and have identified hundreds of common, low-penetrance susceptibility alleles. The combination of these low penetrance risk variants, summed as a polygenic risk score (PRS), can identify individuals across the spectrum of disease risk. However, there remains a substantial bottleneck between the discovery of GWAS-risk variants and their contribution to tumorigenesis mainly because the majority of these variants map to the non-protein coding genome. A range of functional genomic approaches are needed to identify the causal risk variants and target susceptibility genes and establish their underlying role in disease biology. We discuss how the application of these multidisciplinary approaches to understand genetic risk for breast cancer can be used to identify individuals in the population that may benefit from clinical interventions including screening for early detection and prevention, and treatment strategies to reduce breast cancer-related mortalities.
Collapse
Affiliation(s)
| | | | - Simon A. Gayther
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA; (S.T.D.); (J.P.)
| |
Collapse
|