1
|
Rautela I, Thapliyal P, Sahni S, Rayal R, Sharma MD. Potential of seaweeds in preventing cancer and HIV infection in humans. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
Ahmmed MK, Bhowmik S, Giteru SG, Zilani MNH, Adadi P, Islam SS, Kanwugu ON, Haq M, Ahmmed F, Ng CCW, Chan YS, Asadujjaman M, Chan GHH, Naude R, Bekhit AEDA, Ng TB, Wong JH. An Update of Lectins from Marine Organisms: Characterization, Extraction Methodology, and Potential Biofunctional Applications. Mar Drugs 2022; 20:md20070430. [PMID: 35877723 PMCID: PMC9316650 DOI: 10.3390/md20070430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Lectins are a unique group of nonimmune carbohydrate-binding proteins or glycoproteins that exhibit specific and reversible carbohydrate-binding activity in a non-catalytic manner. Lectins have diverse sources and are classified according to their origins, such as plant lectins, animal lectins, and fish lectins. Marine organisms including fish, crustaceans, and mollusks produce a myriad of lectins, including rhamnose binding lectins (RBL), fucose-binding lectins (FTL), mannose-binding lectin, galectins, galactose binding lectins, and C-type lectins. The widely used method of extracting lectins from marine samples is a simple two-step process employing a polar salt solution and purification by column chromatography. Lectins exert several immunomodulatory functions, including pathogen recognition, inflammatory reactions, participating in various hemocyte functions (e.g., agglutination), phagocytic reactions, among others. Lectins can also control cell proliferation, protein folding, RNA splicing, and trafficking of molecules. Due to their reported biological and pharmaceutical activities, lectins have attracted the attention of scientists and industries (i.e., food, biomedical, and pharmaceutical industries). Therefore, this review aims to update current information on lectins from marine organisms, their characterization, extraction, and biofunctionalities.
Collapse
Affiliation(s)
- Mirja Kaizer Ahmmed
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Department of Fishing and Post-Harvest Technology, Faculty of Fisheries, Chittagong Veterinary and Animal Sciences University, Chittagong 4225, Bangladesh
| | - Shuva Bhowmik
- Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Stephen G. Giteru
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Alliance Group Limited, Invercargill 9840, New Zealand
| | - Md. Nazmul Hasan Zilani
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Parise Adadi
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
| | - Shikder Saiful Islam
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston 7250, Australia;
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Osman N. Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Mira Street 28, 620002 Yekaterinburg, Russia;
| | - Monjurul Haq
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
| | - Fatema Ahmmed
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand;
| | | | - Yau Sang Chan
- Department of Obstetrics & Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| | - Md. Asadujjaman
- Department of Aquaculture, Faculty of Fisheries and Ocean Sciences, Khulna Agricultural University, Khulna 9100, Bangladesh;
| | - Gabriel Hoi Huen Chan
- Division of Science, Engineering and Health Studies, College of Professional and Continuing Education, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Ryno Naude
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth 6031, South Africa;
| | - Alaa El-Din Ahmed Bekhit
- Department of Food Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand or (M.K.A.); (S.G.G.); (P.A.)
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| | - Tzi Bun Ng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Jack Ho Wong
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong, China
- Correspondence: (A.E.-D.A.B.); (J.H.W.)
| |
Collapse
|
3
|
Liu Z, Li L, Xue B, Zhao D, Zhang Y, Yan X. A New Lectin from Auricularia auricula Inhibited the Proliferation of Lung Cancer Cells and Improved Pulmonary Flora. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5597135. [PMID: 34337031 PMCID: PMC8289579 DOI: 10.1155/2021/5597135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Lectins are widely distributed in the natural world and are usually involved in antitumor activities. Auricularia auricula (A. auricula) is a medicinal and edible homologous fungus. A. auricula contains many active ingredients, such as polysaccharides, melanin, flavonoids, adenosine, sterols, alkaloids, and terpenes. In this study, we expected to isolate and purify lectin from A. auricula, determine the glycoside bond type and sugar-specific protein of A. auricula lectin (AAL), and finally, determine its antitumor activities. We used ammonium sulfate fractionation, ion exchange chromatography, and affinity chromatography to separate and purify lectin from A. auricula. The result was a 25 kDa AAL with a relative molecular mass of 18913.22. Protein identification results suggested that this lectin contained four peptide chains by comparing with the UniProt database. The FT-IR and β-elimination reaction demonstrated that the connection between the oligosaccharide and polypeptide of AAL was an N-glucoside bond. Analyses of its physical and chemical properties showed that AAL was a temperature-sensitive and acidic/alkaline-dependent glycoprotein. Additionally, the anticancer experiment manifested that AAL inhibited the proliferation of A549, and the IC50 value was 28.19 ± 1.92 μg/mL. RNA sequencing dataset analyses detected that AAL may regulate the expression of JUN, TLR4, and MYD88 to suppress tumor proliferation. Through the pulmonary flora analysis, the bacterial structure of each phylum in the lectin treatment group was more reasonable, and the colonization ability of the normal microflora was improved, indicating that lectin treatment could significantly improve the bacterial diversity characteristics.
Collapse
Affiliation(s)
- ZhenDong Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Liang Li
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Bei Xue
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - DanDan Zhao
- Sino-Russian Joint Laboratory of Bioactive Substance, College of Life Science, Heilongjiang University, 150080, China
| | - YanLong Zhang
- Sino-Russian Joint Laboratory of Bioactive Substance, College of Life Science, Heilongjiang University, 150080, China
| | - XiuFeng Yan
- College of Life and Environmental Science, Wenzhou University, Chashan University Town, Wenzhou 325035, China
| |
Collapse
|
4
|
Antitumor Potential of Marine and Freshwater Lectins. Mar Drugs 2019; 18:md18010011. [PMID: 31877692 PMCID: PMC7024344 DOI: 10.3390/md18010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Often, even the most effective antineoplastic drugs currently used in clinic do not efficiently allow complete healing due to the related toxicity. The reason for the toxicity lies in the lack of selectivity for cancer cells of the vast majority of anticancer agents. Thus, the need for new potent anticancer compounds characterized by a better toxicological profile is compelling. Lectins belong to a particular class of non-immunogenic glycoproteins and have the characteristics to selectively bind specific sugar sequences on the surface of cells. This property is exploited to exclusively bind cancer cells and exert antitumor activity through the induction of different forms of regulated cell death and the inhibition of cancer cell proliferation. Thanks to the extraordinary biodiversity, marine environments represent a unique source of active natural compounds with anticancer potential. Several marine and freshwater organisms, ranging from the simplest alga to the most complex vertebrate, are amazingly enriched in these proteins. Remarkably, all studies gathered in this review show the impressive anticancer effect of each studied marine lectin combined with irrelevant toxicity in vitro and in vivo and pave the way to design clinical trials to assess the real antineoplastic potential of these promising proteins. It provides a concise and precise description of the experimental results, their interpretation as well as the experimental conclusions that can be drawn.
Collapse
|
5
|
Wang Y, Zhang Y, Shao J, Wu B, Li B. Potential immunomodulatory activities of a lectin from the mushroom Latiporus sulphureus. Int J Biol Macromol 2019; 130:399-406. [DOI: 10.1016/j.ijbiomac.2019.02.150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 01/16/2023]
|
6
|
Elumalai P, Rubeena AS, Arockiaraj J, Wongpanya R, Cammarata M, Ringø E, Vaseeharan B. The Role of Lectins in Finfish: A Review. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2019; 27:152-169. [DOI: 10.1080/23308249.2018.1520191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Affiliation(s)
- Preetham Elumalai
- School of Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India
| | - Abdul Salam Rubeena
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kerala, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology (Formerly known as SRM University), Kattankulathur, Chennai, Tamil Nadu, India
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Matteo Cammarata
- Marine Immunobiology Laboratory, Department of Earth and Marine Science, University of Palermo, Palermo, Italy
| | - Einar Ringø
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Baskaralingam Vaseeharan
- Crustacean Molecular Biology and Genomics Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
7
|
Wang Y, Wu B, Shao J, Jia J, Tian Y, Shu X, Ren X, Guan Y. Extraction, purification and physicochemical properties of a novel lectin from Laetiporus sulphureus mushroom. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Chaves RP, Silva SRD, Nascimento Neto LG, Carneiro RF, Silva ALCD, Sampaio AH, Sousa BLD, Cabral MG, Videira PA, Teixeira EH, Nagano CS. Structural characterization of two isolectins from the marine red alga Solieria filiformis (Kützing) P.W. Gabrielson and their anticancer effect on MCF-7 breast cancer cells. Int J Biol Macromol 2017; 107:1320-1329. [PMID: 28970169 DOI: 10.1016/j.ijbiomac.2017.09.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022]
Abstract
As described in the literature, Solieria filiformis lectin (SfL) from the marine red alga S. filiformis was found to have antinociceptive and anti-inflammatory effects. In this study, we characterized two SfL variants, SfL-1 and SfL-2, with molecular mass of 27,552Da and 27,985Da, respectively. The primary structures of SfL-1 and SfL-2 consist of four tandem-repeat protein domains with 67 amino acids each. SfL-1 and -2 showed high similarity to OAAH-family lectins. 3D structure prediction revealed that SfL-1 and -2 are composed of two β-barrel-like domains formed by five antiparallel β-strands, which are connected by a short peptide linker. Furthermore, the mixture of isoforms (SfLs) showed anticancer effect against MCF-7 cells. Specifically, SfLs inhibited 50% of viability in MCF-7 cells after treatment at 125μg.mL-1, while the inhibition of Human Dermal Fibroblasts (HDF) was 34% with the same treatment. Finally, 24h after treatment, 25% of MCF-7 cells were in early apoptosis and 35% in late apoptosis. Evaluation of pro- and anti-apoptotic gene expression of MCF-7 cells revealed that SfLs induced caspase-dependent apoptosis within 24h.
Collapse
Affiliation(s)
- Renata Pinheiro Chaves
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil
| | - Suzete Roberta da Silva
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil
| | - Luiz Gonzaga Nascimento Neto
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil; Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, 60430-160 Fortaleza, Ceará, Brazil
| | - Romulo Farias Carneiro
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil
| | - André Luis Coelho da Silva
- Laboratório de Biotecnologia Molecular - LabBMol, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Campus do Pici, bloco 907, 60440-900, Fortaleza, Ceará, Brazil
| | - Alexandre Holanda Sampaio
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil
| | - Bruno Lopes de Sousa
- Faculdade de Filosofia Dom Aureliano Matos, Universidade Estadual do Ceará, Av. Dom Aureliano Matos, 2060, Limoeiro do Norte, CE, 62930-000, Brazil
| | | | - Paula Alexandra Videira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas - LIBS, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, Monsenhor Furtado, s/n, 60430-160 Fortaleza, Ceará, Brazil
| | - Celso Shiniti Nagano
- Laboratório de Biotecnologia Marinha - BioMar-Lab, Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Campus do Pici s/n, bloco 871, 60440-900 Fortaleza, Ceará, Brazil.
| |
Collapse
|
9
|
Coelho LCBB, Silva PMDS, Lima VLDM, Pontual EV, Paiva PMG, Napoleão TH, Correia MTDS. Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:1594074. [PMID: 28367220 PMCID: PMC5359455 DOI: 10.1155/2017/1594074] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
Abstract
Lectins are proteins extensively used in biomedical applications with property to recognize carbohydrates through carbohydrate-binding sites, which identify glycans attached to cell surfaces, glycoconjugates, or free sugars, detecting abnormal cells and biomarkers related to diseases. These lectin abilities promoted interesting results in experimental treatments of immunological diseases, wounds, and cancer. Lectins obtained from virus, microorganisms, algae, animals, and plants were reported as modulators and tool markers in vivo and in vitro; these molecules also play a role in the induction of mitosis and immune responses, contributing for resolution of infections and inflammations. Lectins revealed healing effect through induction of reepithelialization and cicatrization of wounds. Some lectins have been efficient agents against virus, fungi, bacteria, and helminths at low concentrations. Lectin-mediated bioadhesion has been an interesting characteristic for development of drug delivery systems. Lectin histochemistry and lectin-based biosensors are useful to detect transformed tissues and biomarkers related to disease occurrence; antitumor lectins reported are promising for cancer therapy. Here, we address lectins from distinct sources with some biological effect and biotechnological potential in the diagnosis and therapeutic of diseases, highlighting many advances in this growing field.
Collapse
Affiliation(s)
| | - Priscila Marcelino dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Vera Lúcia de Menezes Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Maria Tereza dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| |
Collapse
|
10
|
Zhou B, Long Y, Song G, Li Q, Cui Z. Molecular characterization of the lgals1 gene in large scale loach Paramisgurnus dabryanus. Gene 2015; 577:65-74. [PMID: 26611526 DOI: 10.1016/j.gene.2015.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/15/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Galectins constitute a group of lectins with binding specificity for β-galactoside sugars. Galectin-1 is a prototype galectin and the multifunctionality of mammalian galectin-1s is well-known, but only a few of fish galectin-1s have been identified. In this study, we obtained the full-length cDNA and genomic sequence of the galectin-1 gene (designated as Pdlgals1) from large scale loach (Paramisgurnus dabryanus), performed phylogenetic analysis, and characterized the expression pattern and the transcriptional activity of its 5' flanking region. The Pdlgals1 gene contains 4 exons that encode a peptide of 132 amino acids with all the galectin signature motifs. Phylogenetic analysis and sequence alignment indicated that Pdlgals1 is a homologue of human LGALS1. RT-PCR and whole-mount in situ hybridization revealed that Pdlgals1 is mainly expressed in the skin, muscle, intestine and cavum oropharyngeum. Transcriptional activity assays demonstrated that the basal promoter of Pdlgals1 is located in a region from -500bp to its transcriptional start site. Potential binding sites for transcription factors including C/EBP, AP-1, GATA, Oct-1, δEF1, NF-κB, c-Myb, SP-1, AP-2, AML-1α, and AP-4 were identified in the basal promoter, suggesting that these factors are associated with the regulation of Pdlgals1. These results provided clues for further investigation of galectin-1 functions in loaches.
Collapse
Affiliation(s)
- Bolan Zhou
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of the Chinese Academy of Sciences, Beijing, PR China
| | - Yong Long
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.
| | - Guili Song
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China
| | - Qing Li
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China
| | - Zongbin Cui
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, PR China.
| |
Collapse
|
11
|
Cheung RCF, Wong JH, Pan W, Chan YS, Yin C, Dan X, Ng TB. Marine lectins and their medicinal applications. Appl Microbiol Biotechnol 2015; 99:3755-73. [PMID: 25794876 PMCID: PMC7080081 DOI: 10.1007/s00253-015-6518-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/01/2015] [Accepted: 03/02/2015] [Indexed: 12/16/2022]
Abstract
Marine organisms have been extensively explored for the last several decades as potential sources of novel biologically active compounds, and extensive research has been conducted on lectins. Lectins derived from marine organisms are structurally diverse and also differ from those identified from terrestrial organisms. Marine lectins appear to be particularly useful in some biological applications. They seem to induce negligible immunogenicity because they have a relatively small size, are more stable due to extensive disulfide bridge formation, and have high specificity for complex glyco-conjugates and carbohydrates instead of simple sugars. It is clear that many of them have not yet been extensively studied when compared with their terrestrial counterparts. Marine lectins can be used to design and develop new potentially useful therapeutic agents. This review encompasses recent research on the isolation and identification of marine lectins with potential value in medicinal applications.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|