1
|
Qiao X, Zhao X, Zeng Y, Gu X, Wang Y, Yu H, He M, Wang L, Song L. The involvement of Rab5 in regulating haematopoiesis in the Chinese mitten crab Eriocheir sinensis. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110363. [PMID: 40268073 DOI: 10.1016/j.fsi.2025.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/08/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Rab5 functions as a pivotal regulator in the intricate processes of membrane trafficking, orchestrating a multitude of cellular activities. In the present study, a Rab5 homolog with conserved structure features was identified from Chinese mitten crab Eriocheir sinensis (designated EsRab5). The mRNA transcripts of EsRab5 were detected in all the tested tissues, with particularly high expression levels observed in brain and haematopoietic tissue (HPT). Notably, its mRNA expression in HPT was significantly up-regulated at 6 and 12 h following stimulation with Aeromonas hydrophila. Immunocytochemical assay showed that EsRab5 protein was diffusely distributed throughout the HPT, with a particularly prominent concentration in the cytoplasm. After A. hydrophila stimulation, the immunoreactive signals for EsRab5 in HPT were markedly more intense compared to those in the control group. Upon injection of EsRab5-specific siRNA to inhibit its expression, a significant increase in the percentage of EdU-positive cells within HPT was observed following A. hydrophila stimulation, which was 2.62-fold (p < 0.0001) of that in the EGFP-RNAi group. Meanwhile, the expression levels of proliferation related factors (EsRunx, EsGLP and EsAstakine), cell cycle-related proteins (EsCyclin E, EsCDK2, EsCDK4, and EsCyclin D) as well as the MAPK signal pathway were increased significantly in EsRab5-RNAi crabs after A. hydrophila stimulation. These results suggested that EsRab5 serves as a critical regulator in homeostasis maintenance of haematopoiesis in E. sinensis by modulating multiple factors.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xinyu Zhao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuqing Zeng
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yiqing Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Hong Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Muchun He
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Zhuhai, Guangdong, Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
2
|
Vijay P, Panwar D, Narwal R, Sehgal N. Structural modeling and gene expression analysis of phosvitinless vitellogenin (vgc) in the Indian freshwater murrel, Channa punctatus (Bloch, 1793). Gen Comp Endocrinol 2024; 352:114491. [PMID: 38494038 DOI: 10.1016/j.ygcen.2024.114491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Vitellogenin (Vg) is a female-specific egg-yolk precursor protein, synthesized in the liver of fish in response to estrogens. In the present study, complete gene of phosvitinless vitellogenin (vgc) was sequenced, its 3D structure was predicted and validated by web-based softwares. The complete nucleotide sequence of vgc was 4126 bp which encodes for 1272 amino acids and showed the presence of three conserved domains viz. LPD_N, DUF1943 and DUF1944. The retrieved amino acid sequence of VgC protein was subjected to in silico analysis for understanding the structural and functional properties of protein. mRNA levels of multiple vg genes have also been quantified during annual reproductive cycle employing qPCR. A correlation has been observed between seasonal changes in gonadosomatic index with estradiol levels and hepatic expression of three types of vg genes (vga, vgb, vgc) during ovarian cycle of murrel. During preparatory phase, when photoperiod and temperature are low; low titre of E2 in blood induces expression of vgc gene. A rapid increase in the levels of E2 favours induction of vgb and vga genes in liver of murrel during early pre-spawning phase when photoperiod is long and temperature is high in nature. These results suggest that among three vitellogenin proteins, VgC is synthesized earlier than VgA and VgB during oogenesis.
Collapse
Affiliation(s)
- Pooja Vijay
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Deepak Panwar
- Center for Individualized Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ritu Narwal
- Department of Zoology, University of Delhi, Delhi 110007, India
| | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
3
|
Sharma L, Pipil S, Rawat VS, Sehgal N. Role of cathepsins B and D in proteolysis of yolk in the catfish Clarias gariepinus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:749-765. [PMID: 35482165 DOI: 10.1007/s10695-022-01062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Yolk processing pathways vary in the oocytes of benthophil and pelagophil teleosts. The present study investigated the yolk processing pattern in the oocytes of the fresh water catfish Clarias gariepinus at vitellogenic, maturation, and ovulated stages. This study concludes that during maturation stage, an electrophoretic shift in the major peptide band on Polyacrylamide gel electrophoresis (PAGE) occurs due to a decrease in the size of the yolk protein. The PMF spectrum of corresponding peptides from vitellogenic and ovulated oocytes revealed a difference in the minor ions. A minor difference in the molecular weight of the corresponding peptides occurs due to a difference in their amino acid composition. Maximal activity of the proteases cathepsin D and cathepsin B was observed in the vitellogenic oocytes, thus confirming their role in the processing of yolk. A significant transient increase in the activity of cathepsin B in the mature oocytes also suggests its role in oocyte maturation.
Collapse
Affiliation(s)
- Luni Sharma
- Maitreyi College, University of Delhi, Delhi, 110021, India
| | - Supriya Pipil
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Neeta Sehgal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
4
|
Shi L, Wang N, Hu X, Yin D, Wu C, Liang H, Cao W, Cao H. Acute toxic effects of lead (Pb 2+) exposure to rare minnow (Gobiocypris rarus) revealed by histopathological examination and transcriptome analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 78:103385. [PMID: 32361275 DOI: 10.1016/j.etap.2020.103385] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 05/21/2023]
Abstract
Lead (Pb) is a toxic heavy metal that can cause significant damage to the aquatic ecosystem. In this study, acute toxicity test of lead in rare minnow (Gobiocypris rarus) was conducted. The average LC50 for 96 h of Pb2+ is 423.01 μg/L (95 % CI: 338.41-531.92 μg/L). The order of bioaccumulation of Pb2+ was gills > kidney > intestine > liver > muscle > brain. A number of cellular and tissue alterations were observed in the gill, liver, kidney and intestine tissues of Pb2+-treated rare minnows through the histological examination performed by H&E and TEM analyses. Furthermore, we investigated the Pb2+-induced toxicity mechanisms in rare minnow based on transcriptome analyses, and a panel of immune-related genes were identified and evaluated by real-time quantitative PCR. In summary, our work indicates that rare minnow could be a valuable model for studying the mechanisms of lead acute toxicity in fish.
Collapse
Affiliation(s)
- Lixia Shi
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nenghan Wang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xudong Hu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dacong Yin
- Changjiang River Scientific Research Institute, Wuhan, 430010, China
| | - Chenxi Wu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenxuan Cao
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hong Cao
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Gao XM, Zhou Y, Zhang DD, Hou CC, Zhu JQ. Multiple vitellogenin genes (vtgs) in large yellow croaker (Larimichthys crocea): molecular characterization and expression pattern analysis during ovarian development. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:829-848. [PMID: 30843140 DOI: 10.1007/s10695-018-0569-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is a marine fish that is economically important to Chinese fisheries, and its reproductive and developmental biology have been extensively investigated. However, the molecular mechanism of oogenesis in L. crocea is not clear. Here, we investigated the multiple vitellogenin (Vtg) system in large yellow croaker. Three different vtg cDNA sequences, including vtgAa, vtgAb and vtgC, were cloned, which indicate the existence of multiple Vtg proteins in large yellow croaker (Lc-Vtgs). Subsequently, the vtg cDNA sequences and predicted Vtg protein structures were analysed, and Vtg protein structures were found to be highly conserved. To research the expression of vtgs during the development of the ovaries, we examined ovarian development and oogenesis by histological analysis. Four stages of ovary development - stages II, III, IV and V - were observed and their boundaries were defined. Soon afterwards, the expression of vtgs in the liver (known as the main site of Vtg synthesis in teleosts) and ovary were analysed. The expression of vtgs was detected in the two tissues. Interestingly, in the early stages of development (stages II and III), there is little or no generation of yolk granules and the expression of vtgs in the liver is low. However, in the late stages (stages IV and V), yolk granules are generated rapidly and the expression of vtgs is significantly increased in the liver. These results support the hypothesis that the Vtgs were synthetized by the liver, and absorbed by the growing oocytes to promote oogenesis in large yellow croaker. We also detected the presence of vtg mRNA in the liver cells and oocytes by in situ hybridization, which indicated that vths were expressed both in the liver and ovaries. Importantly, we found that the distribution of vtgAa and vtgAb mRNA was close to the sites of yolk granule formation in oocytes.
Collapse
Affiliation(s)
- Xin-Ming Gao
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Yang Zhou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Dan-Dan Zhang
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
| | - Cong-Cong Hou
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China.
| | - Jun-Quan Zhu
- Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China.
| |
Collapse
|