1
|
Wang B, Mechaly AS, Somoza GM. Overview and New Insights Into the Diversity, Evolution, Role, and Regulation of Kisspeptins and Their Receptors in Teleost Fish. Front Endocrinol (Lausanne) 2022; 13:862614. [PMID: 35392133 PMCID: PMC8982144 DOI: 10.3389/fendo.2022.862614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 01/04/2023] Open
Abstract
In the last two decades, kisspeptin (Kiss) has been identified as an important player in the regulation of reproduction and other physiological functions in vertebrates, including several fish species. To date, two ligands (Kiss1, Kiss2) and three kisspeptin receptors (Kissr1, Kissr2, Kissr3) have been identified in teleosts, likely due to whole-genome duplication and loss of genes that occurred early in teleost evolution. Recent results in zebrafish and medaka mutants have challenged the notion that the kisspeptin system is essential for reproduction in fish, in marked contrast to the situation in mammals. In this context, this review focuses on the role of kisspeptins at three levels of the reproductive, brain-pituitary-gonadal (BPG) axis in fish. In addition, this review compiled information on factors controlling the Kiss/Kissr system, such as photoperiod, temperature, nutritional status, sex steroids, neuropeptides, and others. In this article, we summarize the available information on the molecular diversity and evolution, tissue expression and neuroanatomical distribution, functional significance, signaling pathways, and gene regulation of Kiss and Kissr in teleost fishes. Of particular note are recent advances in understanding flatfish kisspeptin systems, which require further study to reveal their structural and functional diversity.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Alejandro S. Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Mar del Plata, Argentina
- Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
- *Correspondence: Bin Wang, ; Alejandro S. Mechaly, ; Gustavo M. Somoza,
| |
Collapse
|
2
|
Vissio PG, Di Yorio MP, Pérez-Sirkin DI, Somoza GM, Tsutsui K, Sallemi JE. Developmental aspects of the hypothalamic-pituitary network related to reproduction in teleost fish. Front Neuroendocrinol 2021; 63:100948. [PMID: 34678303 DOI: 10.1016/j.yfrne.2021.100948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is the main system that regulates reproduction in vertebrates through a complex network that involves different neuropeptides, neurotransmitters, and pituitary hormones. Considering that this axis is established early on life, the main goal of the present work is to gather information on its development and the actions of its components during early life stages. This review focuses on fish because their neuroanatomical characteristics make them excellent models to study neuroendocrine systems. The following points are discussed: i) developmental functions of the neuroendocrine components of this network, and ii) developmental disruptions that may impact adult reproduction. The importance of the components of this network and their susceptibility to external/internal signals that can alter their specific early functions and/or even the establishment of the reproductive axis, indicate that more studies are necessary to understand this complex and dynamic network.
Collapse
Affiliation(s)
- Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina.
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Daniela I Pérez-Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Julieta E Sallemi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Idris AB, Idris EB, Ataelmanan AE, Mohamed AEA, Osman Arbab BM, Ibrahim EAM, Hassan MA. First insights into the molecular basis association between promoter polymorphisms of the IL1B gene and Helicobacter pylori infection in the Sudanese population: computational approach. BMC Microbiol 2021; 21:16. [PMID: 33413117 PMCID: PMC7792167 DOI: 10.1186/s12866-020-02072-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infects nearly half of the world's population with a variation in incidence among different geographic regions. Genetic variants in the promoter regions of the IL1B gene can affect cytokine expression and creates a condition of hypoacidity which favors the survival and colonization of H. pylori. Therefore, the aim of this study was to characterize the polymorphic sites in the 5'- region [-687_ + 297] of IL1B in H. pylori infection using in silico tools. RESULTS A total of five nucleotide variations were detected in the 5'-regulatory region [-687_ + 297] of IL1B which led to the addition or alteration of transcription factor binding sites (TFBSs) or composite regulatory elements (CEs). Genotyping of IL1B - 31 C > T revealed a significant association between -31 T and susceptibility to H. pylori infection in the studied population (P = 0.0363). Comparative analysis showed conservation rates of IL1B upstream [-368_ + 10] region above 70% in chimpanzee, rhesus monkey, a domesticated dog, cow and rat. CONCLUSIONS In H. pylori-infected patients, three detected SNPs (- 338, - 155 and - 31) located in the IL1B promoter were predicted to alter TFBSs and CE, which might affect the gene expression. These in silico predictions provide insight for further experimental in vitro and in vivo studies of the regulation of IL1B expression and its relationship to H. pylori infection. However, the recognition of regulatory motifs by computer algorithms is fundamental for understanding gene expression patterns.
Collapse
Affiliation(s)
- Abeer Babiker Idris
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.
| | - Einas Babiker Idris
- Medical Laboratory Specialist, Department of Medical Microbiology, Rashid Medical Complex, Riyadh, Saudi Arabia
| | - Amany Eltayib Ataelmanan
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Al-Gazirah, Wad Madani, Sudan
| | | | | | - El-Amin Mohamed Ibrahim
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Mohamed A Hassan
- Department of Bioinformatics, Africa city of technology, Khartoum, Sudan.,Department of Bioinformatics, DETAGEN Genetic Diagnostics Center, Kayseri, Turkey.,Department of Translation Bioinformatics, Detavax Biotech, Kayseri, Turkey
| |
Collapse
|
4
|
Somoza GM, Mechaly AS, Trudeau VL. Kisspeptin and GnRH interactions in the reproductive brain of teleosts. Gen Comp Endocrinol 2020; 298:113568. [PMID: 32710898 DOI: 10.1016/j.ygcen.2020.113568] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/09/2023]
Abstract
It is well known that gonadotropin-releasing hormone (Gnrh) has a key role in reproduction by regulating the synthesis and release of gonadotropins from the anterior pituitary gland of all vertebrates. About 25 years ago, another neuropeptide, kisspeptin (Kiss1) was discovered as a metastasis suppressor of melanoma cell lines and then found to be essential for mammalian reproduction as a stimulator of hypothalamic Gnrh and regulator of puberty onset. Soon after, a kisspeptin receptor (kissr) was found in the teleost brain. Nowadays, it is known that in most teleosts the kisspeptin system is composed of two ligands, kiss1 and kiss2, and two receptors, kiss2r and kiss3r. Even though both kisspeptin peptides, Kiss1 and Kiss2, have been demonstrated to stimulate gonadotropin synthesis and secretion in different fish species, their actions appear not to be mediated by Gnrh neurons as in mammalian models. In zebrafish and medaka, at least, hypophysiotropic Gnrh neurons do not express Kiss receptors. Furthermore, kisspeptinergic nerve terminals reach luteinizing hormone cells in some fish species, suggesting a direct pituitary action. Recent studies in zebrafish and medaka with targeted mutations of kiss and/or kissr genes reproduce relatively normally. In zebrafish, single gnrh mutants and additionally those having the triple gnrh3 plus 2 kiss mutations can reproduce reasonably well. In these fish, other neuropeptides known to affect gonadotropin secretion were up regulated, suggesting that they may be involved in compensatory responses to maintain reproductive processes. In this context, the present review explores and presents different possibilities of interactions between Kiss, Gnrh and other neuropeptides known to affect reproduction in teleost fish. Our intention is to stimulate a broad discussion on the relative roles of kisspeptin and Gnrh in the control of teleost reproduction.
Collapse
Affiliation(s)
- Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires B7130IWA, Argentina.
| | - Alejandro S Mechaly
- Instituto de Investigaciones en Biodiversidad y Biotecnología (CONICET), Mar del Plata, Buenos Aires 7600, Argentina.
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
5
|
Su S, Li Q, Li X, Rong C, Xie Q. Expression of the kisspeptin/gonadotropin-releasing hormone (GnRH) system in the brain of female Chinese sucker (Myxocyprinus asiaticus) at the onset of puberty. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:293-303. [PMID: 31701283 DOI: 10.1007/s10695-019-00717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
The kisspeptin-kisspeptin receptor (kissr)-gonadotropin-releasing hormone (GnRH) system plays a key role in regulating the onset of puberty in mammals. However, the role of this system in fish is still unclear. We examined the relative gene expression patterns for kiss1, kiss2, kissr2, sGnRH, and pjGnRH in all parts of the brains of Chinese sucker (Myxocyprinus asiaticus) females at the prepubertal and pubertal stages by using real-time PCR. We also analyzed the expression of kiss1 and GnRH1 via immunofluorescence. Two variants of kisspeptin; a variant of kissr (kissr2); and two variants of GnRH, pjGnRH (GnRH1), and sGnRH (GnRH3), were expressed in all parts of the brain. The mRNA expression of kiss1 was higher in the telencephalon, mesencephalon, and diencephalon at the pubertal stage than at the prepubertal stage, and the expression of kiss2 was higher in only the telencephalon. The expression of kissr2 was higher in all parts of the brain, except the medulla, at the pubertal stage than at the prepubertal stage. pjGnRH was highly expressed in all parts of the brain at the pubertal stage, whereas sGnRH expression showed no distinct changes, except in the epencephalon. Strong kiss1 and weak GnRH-1 immunoreactivity was observed in the pineal gland, lateral tuberal nucleus (NLT), and ventral part of the NLT in the diencephalon of the Chinese sucker females at the pubertal stage. Our results suggest that the kiss1-kissr2-pjGnRH system was expressed highly at the onset of pubertal female Chinese sucker.
Collapse
Affiliation(s)
- Shiping Su
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, People's Republic of China.
| | - Qingqing Li
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, People's Republic of China
| | - Xilei Li
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, People's Republic of China
| | - Chaozhen Rong
- Hefei Animal Husbandry and Aquatic Extension Technology Center, Fuyang Road, Hefei, Anhui, 230001, People's Republic of China
| | - Qiming Xie
- College of Animal Sciences and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, People's Republic of China
| |
Collapse
|
6
|
Zhang R, Nie H, Duan S, Yan P, Izaz A, Wang R, Zhou Y, Wu X. Cloning, characterisation and expression profile of kisspeptin1 and the kisspeptin1 receptor in the hypothalamic–pituitary–ovarian axis of Chinese alligator Alligator sinensis during the reproductive cycle. Reprod Fertil Dev 2020; 32:792-804. [DOI: 10.1071/rd19332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022] Open
Abstract
Kisspeptin1 (Kiss1), a product of the Kiss1 gene, plays an important role in the regulation of reproduction in vertebrates by activating the Kiss1 receptor (Kiss1R) and its coexpression with gonadotrophin-releasing hormone (GnRH) in GnRH neurons. The purpose of this study was to clone the Kiss1 and Kiss1R genes found in the brain of Alligator sinensis and to explore their relationship with reproduction. The full-length cDNA of Kiss1 is 816bp, the open reading frame (ORF) is 417bp and the gene encodes a 138-amino acid precursor protein. The full-length cDNA of Kiss1R is 2348bp, the ORF is 1086bp and the gene encodes a 361-amino acid protein. Quantitative polymerase chain reaction showed that, except for Kiss1R expression in the hypothalamus, the expression of Kiss1 and Kiss1Rduring the reproductive period of A. sinensis was higher than that in the hypothalamus, pituitary gland and ovary during the hibernation period. The changes in GnRH2 mRNA in the hypothalamus were similar to those of GnRH1 and peaked during the reproductive period. This study confirms the existence of Kiss1 and Kiss1R in A. sinensis and the findings strongly suggest that Kiss1 and Kiss1R may participate in the regulation of GnRH secretion in the hypothalamus of alligators during the reproductive period. Furthermore, this is the first report of the full-length cDNA sequences of Kiss1 and Kiss1R in reptiles.
Collapse
|
7
|
Mechaly AS, Tovar Bohórquez MO, Mechaly AE, Suku E, Pérez MR, Giorgetti A, Ortí G, Viñas J, Somoza GM. Evidence of Alternative Splicing as a Regulatory Mechanism for Kissr2 in Pejerrey Fish. Front Endocrinol (Lausanne) 2018; 9:604. [PMID: 30386295 PMCID: PMC6200147 DOI: 10.3389/fendo.2018.00604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 09/21/2018] [Indexed: 11/16/2022] Open
Abstract
Kisspeptin receptors are G-Protein-Coupled Receptors that regulate GnRH synthesis and release in vertebrates. Here, we report the gene structure of two kisspeptin receptors (kissr2 and kissr3) in pejerrey fish. Genomic analysis exposed a gene structure with 5 exons and 4 introns for kissr2 and 6 exons and 5 introns for kissr3. Two alternative variants for both genes, named kissr2_v1 and _v2, and kissr3_v1 and v2, were revealed by gene expression analyses of several tissues. For both receptors, these variants were originated by alternative splicing retaining intron 3 and intron 4 for kissr2_v2 and kissr3_v2, respectively. In the case of kissr2, the intron retention introduced two stop codons leading to a putatively truncated protein whereas for kissr3, the intron retention produced a reading shift leading to a stop codon in exon 5. Modeling and structural analysis of Kissr2 and Kissr3 spliced variants revealed that truncation of the proteins may lead to non-functional proteins, as the structural elements missing are critical for receptor function. To understand the functional significance of splicing variants, the expression pattern for kissr2 was characterized on fish subjected to different diets. Fasting induced an up-regulation of kissr2_v1 in the hypothalamus, a brain region implicated in control of reproduction and food intake, with no expression of kissr2_v2. On the other hand, fasting did not elicit differential expression in testes and habenula. These results suggest that alternative splicing may play a role in regulating Kissr2 function in pejerrey.
Collapse
Affiliation(s)
- Alejandro S. Mechaly
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Buenos Aires, Argentina
- *Correspondence: Alejandro S. Mechaly
| | - M. Oswaldo Tovar Bohórquez
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Buenos Aires, Argentina
| | - Ariel E. Mechaly
- Institut Pasteur, Platforme de Cristallographie and CNRS UMR 3528, Paris, France
| | - Eda Suku
- Department of Biotechnology, University of Verona, Verona, Italy
| | - María Rita Pérez
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Buenos Aires, Argentina
| | | | - Guillermo Ortí
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Jordi Viñas
- Laboratori d'Ictiologia Genètica, Departament de Biologia, Universitat de Girona, Girona, Spain
| | - Gustavo M. Somoza
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (CONICET-UNSAM), Buenos Aires, Argentina
- Gustavo M. Somoza
| |
Collapse
|
8
|
Ohga H, Selvaraj S, Matsuyama M. The Roles of Kisspeptin System in the Reproductive Physiology of Fish With Special Reference to Chub Mackerel Studies as Main Axis. Front Endocrinol (Lausanne) 2018; 9:147. [PMID: 29670580 PMCID: PMC5894438 DOI: 10.3389/fendo.2018.00147] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 12/27/2022] Open
Abstract
Kisspeptin, a novel neuropeptide product of the Kiss1 gene, activates the G protein-coupled membrane receptor G protein-coupled receptor 54 (now termed Kiss1r). Over the last 15 years, the importance of the kisspeptin system has been the subject of much debate in the mammalian research field. At the heart of the debate is whether kisspeptin is an absolute upstream regulator of gonadotropin-releasing hormone secretion, as it has been proposed to be the master molecule in reproductive events and plays a special role not only during puberty but also in adulthood. The teleostean kisspeptin system was first documented in 2004. Although there have been a number of kisspeptin studies in various fish species, the role of kisspeptin in reproduction remains a subject of controversy and has not been widely recognized. There is an extensive literature on the physiological and endocrinological bases of gametogenesis in fish, largely derived from studying small, model fish species, and reports on non-model species are limited. The reason for this discrepancy is the technical difficulty inherent in developing rigorous experimental systems in many farmed fish species. We have already established methods for the full life-cycle breeding of a commercially important marine fish, the chub mackerel (cm), and are interested in understanding the reproductive function of kisspeptins from various perspectives. Based on a series of experiments clarifying the role of the brain-pituitary-gonad axis in modulating reproduction in cm, we theorize that the kisspeptin system plays an important role in the reproduction of this scombroid species. In this review article, we provide an overview of kisspeptin studies in cm, which substantially aids in elucidating the role of kisspeptins in fish reproduction.
Collapse
|