1
|
Papadaki M, Mylonas CC, Sarropoulou E. MicroRNAs are involved in ovarian physiology of greater amberjack (Seriola dumerili) under captivity. Gen Comp Endocrinol 2024; 357:114581. [PMID: 39002761 DOI: 10.1016/j.ygcen.2024.114581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Gonad maturation is critical for the reproductive success of any organism, and in fish, captivity can significantly affect their reproductive performance, leading to maturation incompetence and spawning failure. The greater amberjack (Seriola dumerili), a fish species recently introduced to aquaculture fails to undergo oocyte maturation, ovulation, and spawning when reared in aquaculture facilities. Since confinement has been shown to influence gonad maturation and completion of the reproductive cycle, investigations into epigenetic mechanisms may shed light on the reasoning behind the reproductive dysfunctions of fish under captivity. Among the known important epigenetic regulators are small non-coding RNAs (sncRNAs), and in particular microRNAs (miRNAs). In this study, immature, maturing (late vitellogenesis), and spent ovaries of captive greater amberjack were collected, and the differential expression of miRNAs in the three different ovarian development stages was examined. Expression patterns of conserved and novel miRNAs were identified, and potential targets of highly differentially expressed miRNAs were detected. Additionally, read length distribution showed two prominent peaks in the three different ovarian maturation stages, corresponding to miRNAs and putative piwi-interacting RNAs (piRNAs), another type of ncRNAs with a germ-cell specific role. Furthermore, miRNA expression patterns and their putative target mRNAs are discussed, in relevance with the different ovarian maturation stages of captive greater amberjack. Overall, this study provides insights into the role of miRNAs in the reproductive dysfunctions observed in fish under captivity and highlights the importance of epigenetic mechanisms in understanding and managing the reproductive performance of economically important fish species.
Collapse
Affiliation(s)
- Maria Papadaki
- Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece; Biology Department, University of Crete, P.O. Box 2208, Heraklion, Crete 70013, Greece
| | - C C Mylonas
- Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece
| | - Elena Sarropoulou
- Hellenic Center for Marine Research, P.O. Box 2214, Heraklion, Crete 71003, Greece.
| |
Collapse
|
2
|
Martínez Sosa F, Pilot M. Molecular Mechanisms Underlying Vertebrate Adaptive Evolution: A Systematic Review. Genes (Basel) 2023; 14:416. [PMID: 36833343 PMCID: PMC9957108 DOI: 10.3390/genes14020416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Adaptive evolution is a process in which variation that confers an evolutionary advantage in a specific environmental context arises and is propagated through a population. When investigating this process, researchers have mainly focused on describing advantageous phenotypes or putative advantageous genotypes. A recent increase in molecular data accessibility and technological advances has allowed researchers to go beyond description and to make inferences about the mechanisms underlying adaptive evolution. In this systematic review, we discuss articles from 2016 to 2022 that investigated or reviewed the molecular mechanisms underlying adaptive evolution in vertebrates in response to environmental variation. Regulatory elements within the genome and regulatory proteins involved in either gene expression or cellular pathways have been shown to play key roles in adaptive evolution in response to most of the discussed environmental factors. Gene losses were suggested to be associated with an adaptive response in some contexts. Future adaptive evolution research could benefit from more investigations focused on noncoding regions of the genome, gene regulation mechanisms, and gene losses potentially yielding advantageous phenotypes. Investigating how novel advantageous genotypes are conserved could also contribute to our knowledge of adaptive evolution.
Collapse
Affiliation(s)
| | - Małgorzata Pilot
- Museum and Institute of Zoology, Polish Academy of Sciences, 80-680 Gdańsk, Poland
- Faculty of Biology, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
3
|
Roundup in the Reproduction of Crucian Carp ( Carassius carassius): An In Vitro Effect on the Pituitary Gland and Ovary. Animals (Basel) 2022; 13:ani13010105. [PMID: 36611714 PMCID: PMC9817507 DOI: 10.3390/ani13010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Roundup, the most popular herbicide in global agriculture, is regarded as an endocrine disruptor causing alterations of important hormones at the hypothalamic-pituitary-gonadal axis as well as impairment of gametogenesis. The whole pituitary glands of crucian carp (Carassius carassius) were incubated for 3 h in the medium containing Roundup (0-control, 1 and 10 ng/mL). The level of luteinizing hormone (LH), and mRNA transcript abundance of kisspeptin (kiss-1) and its receptor (gpr54), were determined. The isolated ovarian fragments were incubated for 24 h in the presence of Roundup and the following effects on reproductive parameters were determined: the final oocyte maturation and ovulation, structural changes in follicles, secretion of 17,20β-progesterone (17,20β-P) as well as mRNA transcript abundance of the luteinizing hormone receptor (lhr), estrogen receptors (erα, erβ1, erβ2), and zona radiata (chorion) proteins (zp2 and zp3). Roundup inhibited final oocyte maturation and decreased the percentage of ovulated eggs, and furthermore, caused structural changes in the ovarian follicular components. There were no significant changes in the measured hormone levels and analyzed genes mRNA transcript abundance. Summing up, obtained results indicate that Roundup may adversely affect oocyte maturation and the quality of eggs, suggesting that exposure to this herbicide can lead to reproductive disorders in fish.
Collapse
|
4
|
Li R, Qu J, Huang D, He Y, Niu J, Qi J. Expression Analysis of ZPB2a and Its Regulatory Role in Sperm-Binding in Viviparous Teleost Black Rockfish. Int J Mol Sci 2022; 23:ijms23169498. [PMID: 36012756 PMCID: PMC9409380 DOI: 10.3390/ijms23169498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Black rockfish is a viviparous teleost whose sperm could be stored in the female ovary for five months. We previously proposed that zona pellucida (ZP) proteins of black rockfish play a similar sperm-binding role as in mammals. In this study, SsZPB2a and SsZPB2c were identified as the most similar genes with human ZPA, ZPB1 and ZPB2 by Blastp method. Immunohistochemistry showed that ovary-specific SsZPB2a was initially expressed in the cytoplasm of oocytes at stage III. Then it gradually transferred to the region close to the cell membrane and zona pellucida of oocytes at stage IV. The most obvious protein signal was observed at the zona pellucida region of oocytes at stage V. Furthermore, we found that the recombinant prokaryotic proteins rSsZPB2a and rSsZPB2c could bind with the posterior end of sperm head and rSsZPB2a was able to facilitate the sperm survival in vitro. After knocking down Sszpb2a in ovarian tissues cultivated in vitro, the expressions of sperm-specific genes were down-regulated (p < 0.05). These results illustrated the regulatory role of ZP protein to the sperm in viviparous teleost for the first time, which could advance our understanding about the biological function of ZP proteins in the teleost.
Collapse
Affiliation(s)
- Rui Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiangbo Qu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Dan Huang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Correspondence: (J.N.); (J.Q.)
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
- Correspondence: (J.N.); (J.Q.)
| |
Collapse
|
5
|
Sano K, Shimada S, Mibu H, Taguchi M, Ohsawa T, Kawaguchi M, Yasumasu S. Lineage-specific evolution of zona pellucida genes in fish. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:181-191. [PMID: 35189032 DOI: 10.1002/jez.b.23122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
The zona pellucida (ZP) protein constitutes the egg envelope, which surrounds the vertebrate embryo. We performed a comprehensive study on the molecular evolution of ZP genes in Teleostei by cloning and analyzing the expression of ZP genes in fish of Anguilliformes in Elopomorpha, Osteoglossiformes in Osteoglossomorpha, and Clupeiformes in Otocephala to cover unsurveyed fish groups in Teleostei. The present results confirmed findings from our previous reports that the principal organ of ZP gene expression changed from ovary to liver in the common ancestors of Clupeocephala. Even fish species that synthesize egg envelopes in the liver carry the ovary-expressed ZP proteins as minor egg envelope components that were produced by gene duplication during the early stage of Teleostei evolution. The amino acid repeat sequences located at the N-terminal region of ZP proteins are known to be the substrates of transglutaminase responsible for egg envelope hardening and hatching. A repeat sequence was found in zona pellucida Cs of phylogenetically early diverged fish. After changing the synthesis organ, its role is inherited by the N-terminal Pro-Gln-Xaa repeat sequence in liver-expressed zona pellucida B genes of Clupeocephala. These results suggest that teleost ZP genes have independently evolved to maintain fish-specific functions, such as egg envelope hardening and egg envelope digestion, at hatching.
Collapse
Affiliation(s)
- Kaori Sano
- Deparatment of Chemistry, Faculty of Science, Josai University, Sakado, Saitama, Japan
| | - Sho Shimada
- Deparatment of Chemistry, Faculty of Science, Josai University, Sakado, Saitama, Japan
| | - Hideki Mibu
- Deparatment of Chemistry, Faculty of Science, Josai University, Sakado, Saitama, Japan
| | - Mizuki Taguchi
- Department of Biology, Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa, Japan
| | - Takasumi Ohsawa
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo, Japan
| | - Mari Kawaguchi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo, Japan
| | - Shigeki Yasumasu
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
6
|
Słowińska M, Paukszto Ł, Pardyak L, Jastrzębski JP, Liszewska E, Wiśniewska J, Kozłowski K, Jankowski J, Bilińska B, Ciereszko A. Transcriptome and Proteome Analysis Revealed Key Pathways Regulating Final Stage of Oocyte Maturation of the Turkey ( Meleagris gallopavo). Int J Mol Sci 2021; 22:ijms221910589. [PMID: 34638931 PMCID: PMC8508634 DOI: 10.3390/ijms221910589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
In birds, the zona pellucida (ZP) matrix that surrounds the ovulated oocyte—called the inner perivitelline layer—is involved in sperm–zona interaction and successful fertilization. To identify the important genes and proteins connected with the final step of egg development, next-generation sequencing and two-dimensional electrophoresis, combined with mass spectrometry, were used for the analysis of mature oocytes at the F1 developmental stage. A total of 8161 genes and 228 proteins were annotated. Six subfamilies of genes, with codes ZP, ZP1–4, ZPD, and ZPAX, were identified, with the dominant expression of ZPD. The main expression site for ZP1 was the liver; however, granulosa cells may also participate in local ZP1 secretion. A ubiquitination system was identified in mature oocytes, where ZP1 was found to be the main ubiquitinated protein. Analysis of transcripts classified in estrogen receptor (ESR) signaling indicated the presence of ESR1 and ESR2, as well as a set of estrogen-dependent genes involved in both genomic and nongenomic mechanisms for the regulation of gene expression by estrogen. Oxidative phosphorylation was found to be a possible source of adenosine triphosphate, and the nuclear factor erythroid 2-related factor 2 signaling pathway could be involved in the response against oxidative stress. Oocyte–granulosa cell communication by tight, adherens, and gap junctions seems to be essential for the final step of oocyte maturation.
Collapse
Affiliation(s)
- Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
- Correspondence: ; Tel.: +48-89-539-3173
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, 30-248 Kraków, Poland;
| | - Jan P. Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (Ł.P.); (J.P.J.)
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
| | - Joanna Wiśniewska
- Department of Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland;
| | - Krzysztof Kozłowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.K.); (J.J.)
| | - Jan Jankowski
- Department of Poultry Science, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (K.K.); (J.J.)
| | - Barbara Bilińska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, 30-387 Kraków, Poland;
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, 10-748 Olsztyn, Poland; (E.L.); (A.C.)
| |
Collapse
|
7
|
Dong Z, Li X, Yao Z, Wang C, Guo Y, Wang Q, Shao C, Wang Z. Oryzias curvinotus in Sanya Does Not Contain the Male Sex-Determining Gene dmy. Animals (Basel) 2021; 11:ani11051327. [PMID: 34066583 PMCID: PMC8148570 DOI: 10.3390/ani11051327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 01/18/2023] Open
Abstract
Hainan medaka (Oryzias curvinotus) is distributed in the coastal waters of the South China Sea and is able to adapt to a wide range of salinities. In this study, we characterized O. curvinotus in Sanya River (SY-medaka), which lacks dmy (a male sex-determining gene in O. latipes and O. curvinotus). In a comparison of SY-medaka and Gaoqiao medaka (GQ-medaka), the morphological difference between the two populations does not reach the subspecies level and they can be considered two geographic populations of O. curvinotus. A mitochondrial cytochrome oxidase subunit I (CoI) sequence alignment showed that the sequence identities between SY-medaka and other geographic populations of O. curvinotus are as high as 95%. A phylogenetic analysis of the mitochondrial genome also indicated that SY-medaka belongs to O. curvinotus. Molecular marker-based genetic sex assays and whole genome re-sequencing showed that SY-medaka does not contain dmy. Further, in RNA-Seq analyses of the testis and ovaries of sexually mature SY-medaka, dmy expression was not detected. We speculate that high temperatures resulted in the loss of dmy in SY-medaka during evolution, or the lineage has another sex-determining gene. This study provides a valuable dataset for elucidating the mechanism underlying sex determination in Oryzias genus and advances research on functional genomics or reproduction biology in O. curvinotus.
Collapse
Affiliation(s)
- Zhongdian Dong
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- Correspondence: (Z.D.); (Z.W.)
| | - Xueyou Li
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
| | - Zebin Yao
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
| | - Chun Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
| | - Yusong Guo
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
| | - Qian Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Qingdao 266071, China; (Q.W.); (C.S.)
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Qingdao 266071, China; (Q.W.); (C.S.)
| | - Zhongduo Wang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China; (X.L.); (Z.Y.); (C.W.); (Y.G.)
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Fisheries College, Guangdong Ocean University, Zhanjiang 524025, China
- State Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University School, Changsha 410081, China
- Correspondence: (Z.D.); (Z.W.)
| |
Collapse
|
8
|
Izquierdo-Rico MJ, Moros-Nicolás C, Pérez-Crespo M, Laguna-Barraza R, Gutiérrez-Adán A, Veyrunes F, Ballesta J, Laudet V, Chevret P, Avilés M. ZP4 Is Present in Murine Zona Pellucida and Is Not Responsible for the Specific Gamete Interaction. Front Cell Dev Biol 2021; 8:626679. [PMID: 33537315 PMCID: PMC7848090 DOI: 10.3389/fcell.2020.626679] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Mammalian eggs are surrounded by an extracellular matrix called the zona pellucida (ZP). This envelope participates in processes such as acrosome reaction induction, sperm binding, protection of the oviductal embryo, and may be involved in speciation. In eutherian mammals, this coat is formed of three or four glycoproteins (ZP1-ZP4). While Mus musculus has been used as a model to study the ZP for more than 35 years, surprisingly, it is the only eutherian species in which the ZP is formed of three glycoproteins Zp1, Zp2, and Zp3, Zp4 being a pseudogene. Zp4 was lost in the Mus lineage after it diverged from Rattus, although it is not known when precisely this loss occurred. In this work, the status of Zp4 in several murine rodents was tested by phylogenetic, molecular, and proteomic analyses. Additionally, assays of cross in vitro fertilization between three and four ZP rodents were performed to test the effect of the presence of Zp4 in murine ZP and its possible involvement in reproductive isolation. Our results showed that Zp4 pseudogenization is restricted to the subgenus Mus, which diverged around 6 MYA. Heterologous in vitro fertilization assays demonstrate that a ZP formed of four glycoproteins is not a barrier for the spermatozoa of species with a ZP formed of three glycoproteins. This study identifies the existence of several mouse species with four ZPs that can be considered suitable for use as an experimental animal model to understand the structural and functional roles of the four ZP proteins in other species, including human.
Collapse
Affiliation(s)
- Mª José Izquierdo-Rico
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| | - Carla Moros-Nicolás
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| | - Míriam Pérez-Crespo
- Department of Animal Reproduction, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Ricardo Laguna-Barraza
- Department of Animal Reproduction, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Department of Animal Reproduction, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Frédéric Veyrunes
- Institut des Sciences de l'Evolution, UMR5554 CNRS/Université Montpellier/IRD/EPHE, Montpellier, France
| | - José Ballesta
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Pascale Chevret
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute for Biomedical Research of Murcia (IMIB-Arrixaca), Murcia, Spain
- International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, Murcia, Spain
| |
Collapse
|
9
|
Wang Y, Chen F, He J, Xue G, Chen J, Xie P. Cellular and molecular modification of egg envelope hardening in fertilization. Biochimie 2020; 181:134-144. [PMID: 33333173 DOI: 10.1016/j.biochi.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/07/2020] [Accepted: 12/13/2020] [Indexed: 11/30/2022]
Abstract
Fertilization is an essential process that fundamentally impacts fitness. An egg changes dramatically after fertilization mediating the beginning of life, which mainly includes the transformation of the egg envelope via hardening, which is thought to be due to complex reactions involved in the conversion of cellular and molecular. This review highlights the mechanisms of egg envelope hardening in teleost fish. We conclude that the egg envelope hardening might be carried out in two steps. (a) A metalloprotease (alveolin) hydrolyzes the N-terminal proline-glutamine (Pro-Gln) region of zona pellucida (ZP) 1 and (b) triggers intermolecular cross-linking to ZP3 catalyzed by transglutaminase (TGase). The post-fertilization hardening of the egg envelope is an evolutionarily conserved phenomenon across species. We discuss the biochemical function and interaction of some factors reported to be essential to egg envelope hardening in mammalian and nonmammalian species, including metalloprotease, TGase, peroxidase/ovoperoxidase, and other factors (carbohydrate moieties, zinc and Larp6 proteins), and the relevant data suggest that egg envelope hardening is crucial to block polyspermy in internal fertilization, in addition to protecting the developing embryo from mechanical shock and preventing bacterial infection in external fertilization. Increased knowledge of the processes of egg envelope hardening and fertilization is likely to make a remarkable contribution to reproduction and aquaculture.
Collapse
Affiliation(s)
- Yeke Wang
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun He
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ge Xue
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; Institute of Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environment, Yunnan University, Kunming, 650500, PR China.
| |
Collapse
|
10
|
He Y, Chang Y, Bao L, Yu M, Li R, Niu J, Fan G, Song W, Seim I, Qin Y, Li X, Liu J, Kong X, Peng M, Sun M, Wang M, Qu J, Wang X, Liu X, Wu X, Zhao X, Wang X, Zhang Y, Guo J, Liu Y, Liu K, Wang Y, Zhang H, Liu L, Wang M, Yu H, Wang X, Cheng J, Wang Z, Xu X, Wang J, Yang H, Lee SMY, Liu X, Zhang Q, Qi J. A chromosome-level genome of black rockfish, Sebastes schlegelii, provides insights into the evolution of live birth. Mol Ecol Resour 2019; 19:1309-1321. [PMID: 31077549 DOI: 10.1111/1755-0998.13034] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/26/2022]
Abstract
The black rockfish (Sebastes schlegelii) is a teleost in which eggs are fertilized internally and retained in the maternal reproductive system, where they undergo development until live birth (viviparity). In the present study, we report a chromosome-level black rockfish genome assembly. High-throughput transcriptome analysis (RNA-seq and ATAC-seq) coupled with in situ hybridization (ISH) and immunofluorescence reveal several candidate genes for maternal preparation, sperm storage and release, and hatching. We propose that zona pellucida (ZP) proteins retain sperm at the oocyte envelope, while genes in two distinct astacin metalloproteinase subfamilies serve to release sperm from the ZP and free the embryo from chorion at prehatching stage. We present a model of black rockfish reproduction, and propose that the rockfish ovarian wall has a similar function to the uterus of mammals. Together, these genomic data reveal unprecedented insights into the evolution of an unusual teleost life history strategy, and provide a sound foundation for studying viviparity in nonmammalian vertebrates and an invaluable resource for rockfish ecological and evolutionary research.
Collapse
Affiliation(s)
- Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yue Chang
- BGI-Shenzhen, Shenzhen, China.,BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Lisui Bao
- The University of Chicago, Chicago, Illinois
| | - Mengjun Yu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Rui Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China.,Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Yating Qin
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Xuemei Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jinxiang Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiangfu Kong
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Meiting Peng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Minmin Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jiangbo Qu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuangang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaobing Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaolong Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xi Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuliang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jiao Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yang Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Kaiqiang Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Yilin Wang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - He Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Mingyue Wang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Haiyang Yu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xubo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jie Cheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhigang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, Macao, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, China.,BGI-Fuyang, BGI-Shenzhen, Fuyang, China
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
11
|
Kim BM, Amores A, Kang S, Ahn DH, Kim JH, Kim IC, Lee JH, Lee SG, Lee H, Lee J, Kim HW, Desvignes T, Batzel P, Sydes J, Titus T, Wilson CA, Catchen JM, Warren WC, Schartl M, Detrich HW, Postlethwait JH, Park H. Antarctic blackfin icefish genome reveals adaptations to extreme environments. Nat Ecol Evol 2019; 3:469-478. [PMID: 30804520 PMCID: PMC7307600 DOI: 10.1038/s41559-019-0812-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/15/2019] [Indexed: 11/09/2022]
Abstract
Icefishes (suborder Notothenioidei; family Channichthyidae) are the only vertebrates that lack functional haemoglobin genes and red blood cells. Here, we report a high-quality genome assembly and linkage map for the Antarctic blackfin icefish Chaenocephalus aceratus, highlighting evolved genomic features for its unique physiology. Phylogenomic analysis revealed that Antarctic fish of the teleost suborder Notothenioidei, including icefishes, diverged from the stickleback lineage about 77 million years ago and subsequently evolved cold-adapted phenotypes as the Southern Ocean cooled to sub-zero temperatures. Our results show that genes involved in protection from ice damage, including genes encoding antifreeze glycoprotein and zona pellucida proteins, are highly expanded in the icefish genome. Furthermore, genes that encode enzymes that help to control cellular redox state, including members of the sod3 and nqo1 gene families, are expanded, probably as evolutionary adaptations to the relatively high concentration of oxygen dissolved in cold Antarctic waters. In contrast, some crucial regulators of circadian homeostasis (cry and per genes) are absent from the icefish genome, suggesting compromised control of biological rhythms in the polar light environment. The availability of the icefish genome sequence will accelerate our understanding of adaptation to extreme Antarctic environments.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea
| | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Seunghyun Kang
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea
| | - Do-Hwan Ahn
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea
| | - Jin-Hyoung Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea
| | - Il-Chan Kim
- Department of Polar Life Science, Korea Polar Research Institute, Incheon, Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea.,Polar Science, University of Science and Technology, Daejeon, Korea
| | - Sung Gu Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea.,Polar Science, University of Science and Technology, Daejeon, Korea
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea.,Polar Science, University of Science and Technology, Daejeon, Korea
| | - Jungeun Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea.,Polar Science, University of Science and Technology, Daejeon, Korea
| | - Han-Woo Kim
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea.,Polar Science, University of Science and Technology, Daejeon, Korea
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Julian M Catchen
- Department of Animal Biology, University of Illinois, Champaign, IL, USA
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Manfred Schartl
- Department of Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany. .,Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA. .,Department of Biology, Texas A&M University, College Station, TX, USA.
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, USA.
| | | | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea. .,Polar Science, University of Science and Technology, Daejeon, Korea.
| |
Collapse
|
12
|
Feng JM, Tian HF, Hu QM, Meng Y, Xiao HB. Evolution and multiple origins of zona pellucida genes in vertebrates. Biol Open 2018; 7:7/11/bio036137. [PMID: 30425109 PMCID: PMC6262864 DOI: 10.1242/bio.036137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Animal egg coats are composed of different glycoproteins collectively named zona pellucida (ZP) proteins. The characterized vertebrate genes encoding ZP proteins have been classified into six subfamilies, and exhibit low similarity to the ZP genes characterized in certain invertebrates. The origin and evolution of the vertebrate ZP genes remain obscure. A search against 97 representative metazoan species revealed various numbers (ranging from three to 33) of different putative egg-coat ZP genes in all 47 vertebrates and several ZP genes in five invertebrate species, but no putative ZP gene was found in the other 45 species. Based on phylogenetic and synteny analyses, all vertebrate egg-coat ZP genes were classified into eight ZP gene subfamilies. Lineage- and species-specific gene duplications and gene losses occurred frequently and represented the main causes of the patchy distribution of the eight ZP gene subfamilies in vertebrates. Thorough phylogenetic analyses revealed that the vertebrate ZP genes could be traced to three independent origins but were not orthologues of the characterized invertebrate ZP genes. Our results suggested that vertebrate egg-coat ZP genes should be classified into eight subfamilies, and a putative evolutionary map is proposed. These findings would aid the functional and evolutionary analyses of these reproductive genes in vertebrates. Summary: Phylogenetic and synteny analyses indicate that the vertebrate zona pellucida (ZP) genes encoding egg coat proteins can be classified into eight subfamilies, and the evolutionary origins of these genes are discussed.
Collapse
Affiliation(s)
- Jin-Mei Feng
- Department of Pathogenic Biology, School of Medicine, Jianghan University, Wuhan, Hubei Province 430056, China
| | - Hai-Feng Tian
- Department of Aquaculture and Genetics Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei Province, China
| | - Qiao-Mu Hu
- Department of Aquaculture and Genetics Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei Province, China
| | - Yan Meng
- Department of Aquaculture and Genetics Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei Province, China
| | - Han-Bing Xiao
- Department of Aquaculture and Genetics Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, Hubei Province, China
| |
Collapse
|