1
|
Jo JY, Kim JW, Noh ES, Kim YO, Gong SP, Kong HJ, Choi JH. Establishment and Characterization of OFT and OFO Cell Lines from Olive Flounder ( Paralichthys olivaceus) for Use as Feeder Cells. BIOLOGY 2025; 14:229. [PMID: 40136486 PMCID: PMC11939788 DOI: 10.3390/biology14030229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025]
Abstract
Olive flounder (Paralichthys olivaceus) is a commercially important fish species in Japan, China, and the Republic of Korea. Despite numerous attempts to improve productivity, there have been no studies of in vitro germline stem cell (GSC) culture in this species. Here, olive flounder testicular and ovarian cell lines (OFT and OFO, respectively) were established and characterized. RT-PCR demonstrated that OFT and OFO expressed several gonadal somatic cell markers, including wt1 and fgf2, but lacked expression of germ cell markers, such as vasa, nanos2, and scp3. In addition, SNP analysis revealed that OFT originated from XY male P. olivaceus and OFO originated from XX female P. olivaceus. These results suggest that OFT was composed of Sertoli cells and OFO was composed of granulosa cells and theca cells. Finally, coculture of OFT or OFO with enriched male P. olivaceus GSCs isolated from the top 20% and 20-30% Percoll density gradient layers showed that GSCs were attached on both cell lines. In conclusion, we established P. olivaceus testicular and ovarian cell lines, which were expected to use for development of an in vitro GSC culture system.
Collapse
Affiliation(s)
- Ja Young Jo
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Eun Soo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Yong-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Seung Pyo Gong
- Major in Aquaculture and Applied Life Science, Division of Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Hee Jeong Kong
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| | - Jae Hoon Choi
- Biotechnology Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea; (J.Y.J.); (J.-W.K.); (E.S.N.); (Y.-O.K.); (H.J.K.)
| |
Collapse
|
2
|
Sun X, Tao B, Wang Y, Hu W, Sun Y. Isolation and Characterization of Germline Stem Cells in Protogynous Hermaphroditic Monopterus albus. Int J Mol Sci 2022; 23:ijms23115861. [PMID: 35682541 PMCID: PMC9180834 DOI: 10.3390/ijms23115861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 02/04/2023] Open
Abstract
Germline stem cells (GSCs) are a group of unique adult stem cells in gonads that act as important transmitters for genetic information. Donor GSCs have been used to produce offspring by transplantation in fisheries. In this study, we successfully isolated and enriched GSCs from the ovary, ovotestis, and testis of Monopterus albus, one of the most important breeding freshwater fishes in China. Transcriptome comparison assay suggests that a distinct molecular signature exists in each type of GSC, and that different signaling activities are required for the maintenance of distinct GSCs. Functional analysis shows that fGSCs can successfully colonize and contribute to the germline cell lineage of a host zebrafish gonad after transplantation. Finally, we describe a simple feeder-free method for the isolation and enrichment of GSCs that can contribute to the germline cell lineage of zebrafish embryos and generate the germline chimeras after transplantation.
Collapse
Affiliation(s)
- Xiaoyun Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.S.); (B.T.); (Y.W.)
| | - Binbin Tao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.S.); (B.T.); (Y.W.)
| | - Yongxin Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.S.); (B.T.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Wei Hu
- University of Chinese Academy of Sciences, Beijing 100049, China;
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuhua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.S.); (B.T.); (Y.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
- The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- Correspondence:
| |
Collapse
|
3
|
Xie X, Tichopád T, Kislik G, Langerová L, Abaffy P, Šindelka R, Franěk R, Fučíková M, Steinbach C, Shah MA, Šauman I, Chen F, Pšenička M. Isolation and Characterization of Highly Pure Type A Spermatogonia From Sterlet ( Acipenser ruthenus) Using Flow-Cytometric Cell Sorting. Front Cell Dev Biol 2021; 9:772625. [PMID: 34957105 PMCID: PMC8708567 DOI: 10.3389/fcell.2021.772625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Sturgeons are among the most ancient linages of actinopterygians. At present, many sturgeon species are critically endangered. Surrogate production could be used as an affordable and a time-efficient method for endangered sturgeons. Our study established a method for identifying and isolating type A spermatogonia from different developmental stages of testes using flow cytometric cell sorting (FCM). Flow cytometric analysis of a whole testicular cell suspension showed several well-distinguished cell populations formed according to different values of light scatter parameters. FCM of these different cell populations was performed directly on glass slides for further immunocytochemistry to identify germ cells. Results showed that the cell population in gate P1 on a flow cytometry plot (with high forward scatter and high side scatter parameter values) contains the highest amount of type A spermatogonia. The sorted cell populations were characterized by expression profiles of 10 germ cell specific genes. The result confirmed that setting up for the P1 gate could precisely sort type A spermatogonia in all tested testicular developmental stages. The P2 gate, which was with lower forward scatter and side scatter values mostly, contained type B spermatogonia at a later maturing stage. Moreover, expressions of plzf, dnd, boule, and kitr were significantly higher in type A spermatogonia than in later developed germ cells. In addition, plzf was firstly found as a reliable marker to identify type A spermatogonia, which filled the gap of identification of spermatogonial stem cells in sterlet. It is expected to increase the efficiency of germ stem cell culture and transplantation with plzf identification. Our study thus first addressed a phenotypic characterization of a pure type A spermatogonia population in sterlet. FCM strategy can improve the production of sturgeons with surrogate broodstock and further the analysis of the cellular and molecular mechanisms of sturgeon germ cell development.
Collapse
Affiliation(s)
- Xuan Xie
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Tomáš Tichopád
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Galina Kislik
- Imaging Methods Core Facility at BIOCEV, Operated by Faculty of Science, Charles University in Prague, Vestec, Czechia
| | - Lucie Langerová
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Radek Šindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Roman Franěk
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Michaela Fučíková
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Christoph Steinbach
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Mujahid Ali Shah
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| | - Ivo Šauman
- Biology Center of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czechia.,University of South Bohemia, Faculty of Science, České Budějovice, Czechia
| | - Fan Chen
- Department of Pharmacology, C_DAT, University Medicine Greifswald, Greifswald, Germany
| | - Martin Pšenička
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Vodňany, Czechia
| |
Collapse
|
4
|
Zhou L, Wang X, Liu Q, Yang J, Xu S, Wu Z, Wang Y, You F, Song Z, Li J. Successful Spermatogonial Stem Cells Transplantation within Pleuronectiformes: First Breakthrough at inter-family Level in Marine Fish. Int J Biol Sci 2021; 17:4426-4441. [PMID: 34803508 PMCID: PMC8579436 DOI: 10.7150/ijbs.63266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022] Open
Abstract
As a promising biotechnology, fish germ cell transplantation shows potentials in conservation germplasm resource, propagation of elite species, and generation of transgenic individuals. In this study, we successfully transplanted the Japanese flounder (P. olivaceus), summer flounder (P. dentatus), and turbot (S. maximus) spermatogonia into triploid Japanese flounder larvae, and achieved high transplantation efficiency of 100%, 75-95% and 33-50% by fluorescence tracking and molecular analysis, respectively. Eventually, donor-derived spermatozoa produced offspring by artificial insemination. We only found male and intersex chimeras in inter-family transplantations, while male and female chimeras in both intra-species and intra-genus transplantations. Moreover, the intersex chimeras could mature and produce turbot functional spermatozoa. We firstly realized inter-family transplantation in marine fish species. These results demonstrated successful spermatogonial stem cells transplantation within Pleuronectiformes, suggesting the germ cells migration, incorporation and maturation within order were conserved across a wide range of teleost species.
Collapse
Affiliation(s)
- Li Zhou
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Life Science, Ningde Normal University, Engineering Research Center of Mindong Aquatic Product Deep-Processing, Fujian Province University, Ningde, China
| | - Xueying Wang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghua Liu
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingkun Yang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shihong Xu
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihao Wu
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yanfeng Wang
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Feng You
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd., Weihai, China
| | - Jun Li
- The Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Rivers N, Daly J, Temple-Smith P. New directions in assisted breeding techniques for fish conservation. Reprod Fertil Dev 2021; 32:807-821. [PMID: 32527372 DOI: 10.1071/rd19457] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Fish populations continue to decline globally, signalling the need for new initiatives to conserve endangered species. Over the past two decades, with advances in our understanding of fish germ line biology, new exsitu management strategies for fish genetics and reproduction have focused on the use of germ line cells. The development of germ cell transplantation techniques for the purposes of propagating fish species, most commonly farmed species such as salmonids, has been gaining interest among conservation scientists as a means of regenerating endangered species. Previously, exsitu conservation methods in fish have been restricted to the cryopreservation of gametes or maintaining captive breeding colonies, both of which face significant challenges that have restricted their widespread implementation. However, advances in germ cell transplantation techniques have made its application in endangered species tangible. Using this approach, it is possible to preserve the genetics of fish species at any stage in their reproductive cycle regardless of sexual maturity or the limitations of brief annual spawning periods. Combining cryopreservation and germ cell transplantation will greatly expand our ability to preserve functional genetic samples from threatened species, to secure fish biodiversity and to produce new individuals to enhance or restore native populations.
Collapse
Affiliation(s)
- Nicola Rivers
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne, Vic. 3168, Australia; and Corresponding author.
| | - Jonathan Daly
- Smithsonian Conservation Biology Institute, Front Royal, VA 22360, USA; and Hawaii Institute of Marine Biology, 46-007 Lilipuna Road, Kaneohe, HI 96744, USA
| | - Peter Temple-Smith
- Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne, Vic. 3168, Australia
| |
Collapse
|
6
|
Ma X, Su B, Bangs M, Alston V, Backenstose NJC, Simora RM, Wang W, Xing D, Li S, Ye Z, Moss AG, Duong TY, Wang X, Dunham RA. Comparative Genomic and Transcriptomic Analyses Revealed Twenty-Six Candidate Genes Involved in the Air-Breathing Development and Function of the Bighead Catfish Clarias macrocephalus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:90-105. [PMID: 33113010 DOI: 10.1007/s10126-020-10005-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The bighead catfish (Clarias macrocephalus) and channel catfish (Ictalurus punctatus) are freshwater species in the Siluriformes order. C. macrocephalus has both gills and modified gill structures serving as an air-breathing organ (ABO), while I. punctatus does not possess such an organ, and cannot breathe in air, providing an excellent model for studying the molecular basis of ABO development in teleost fish. To investigate the critical time window for the development of air-breathing function, seven development stages were selected based on hypoxia challenge results, and RNA-seq was performed upon C. macrocephalus to compare with the non-air-breathing I. punctatus. Five-hundred million reads were generated and 25,239 expressed genes were annotated in C. macrocephalus. Among those, 8675 genes were differentially expressed across developmental stages. Comparative genomic analysis identified 1458 C. macrocephalus specific genes, which were absent in I. punctatus. Gene network and protein-protein interaction analyses identified 26 key hub genes involved in the air-breathing function. Three top candidate genes, mb, ngb, hbae, are mainly associated with oxygen carrying, oxygen binding, and heme binding activities. Our study provides a rich data set for exploring the genomic basis of air-breathing function in C. macrocephalus and offers insights into the adaption to hypoxic environments.
Collapse
Affiliation(s)
- Xiaoli Ma
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Baofeng Su
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Max Bangs
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, 32304, USA
| | - Veronica Alston
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Nathan J C Backenstose
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Rhoda Mae Simora
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- College of Fisheries and Ocean Sciences, University of the Philippines Visayas, Miagao, 5023, Iloilo, Philippines
| | - Wenwen Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
| | - Zhi Ye
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
| | - Anthony G Moss
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA
- Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Thuy-Yen Duong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, 94000, Vietnam
| | - Xu Wang
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA.
- Department of Pathobiology, Auburn University, Auburn, AL, 36849, USA.
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA.
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Alabama Agricultural Experiment Station, Auburn, AL, 36849, USA.
| |
Collapse
|
7
|
Abualreesh M, Myers JN, Gurbatow J, Johnson A, Xing D, Wang J, Li S, Coogan M, Vo K, El Husseini N, Dunham RA, Butts IAE. Development of a spermatogonia cryopreservation protocol for blue catfish, Ictalurus furcatus. Cryobiology 2020; 97:46-52. [PMID: 33058900 DOI: 10.1016/j.cryobiol.2020.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/23/2023]
Abstract
Sustainability of channel catfish, Ictalurus punctatus ♀ × blue catfish, Ictalurus furcatus ♂ hybrid aquaculture relies on new innovative technologies to maximize fry output. Transplanting spermatogonial stem cells (SSCs) from blue catfish into channel catfish hosts has the potential to greatly increase gamete availability and improve hybrid catfish fry outputs. Cryopreservation would make these cells readily accessible for xenogenesis, but a freezing protocol for blue catfish testicular tissues has not yet been fully developed. Therefore, the objectives of this experiment were to identify the best permeating [dimethyl sulfoxide (DMSO), ethylene glycol (EG), glycerol, methanol] and non-permeating (lactose or trehalose with egg yolk or BSA) cryoprotectants, their optimal concentrations, and the best freezing rates (-0.5, -1.0, -5.0, -10 °C/min until -80 °C) that yield the highest number of viable type A spermatogonia cells. Results showed that all of these factors had significant impacts on post-thaw cell production and viability. DMSO was the most efficient permeating cryoprotectant at a concentration of 1.0 M. The optimal concentration of each cryoprotectant depended on the specific cryoprotectant due to interactions between the two factors. Of the non-permeating cryoprotectants, 0.2 M lactose with egg yolk consistently improved type A spermatogonia production and viability beyond that of the 1.0 M DMSO control. The overall best freezing rate was consistent at -1 °C/min, but similar results were obtained using -0.5 °C/min. Overall, we recommend cryopreserving blue catfish testicular tissues in 1.0 M DMSO with 0.2 M lactose and egg yolk at a rate of either -0.5 or -1 °C/min to achieve the best cryopreservation outcomes. Continued development of cryopreservation protocols for blue catfish and other species will make spermatogonia available for xenogenic applications and genetic improvement programs.
Collapse
Affiliation(s)
- Muyassar Abualreesh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jaelen N Myers
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jeremy Gurbatow
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Andrew Johnson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - De Xing
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Jinhai Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shangjia Li
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Michael Coogan
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Department of Aquaculture and Technology, Can Tho Technical Economic College, Can Tho, Viet Nam
| | - Nour El Husseini
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Rex A Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
8
|
Tian J, Ma K, Pei CB, Zhang SH, Li X, Zhou Y, Yan B, Wang HY, Ma LH. Relative safety of various spermatogenic stem cell purification methods for application in spermatogenic stem cell transplantation. Stem Cell Res Ther 2019; 10:382. [PMID: 31842987 PMCID: PMC6916234 DOI: 10.1186/s13287-019-1481-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/18/2019] [Accepted: 10/31/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Spermatogonial stem cell (SSC) transplantation technology as a promising option for male fertility preservation has received increasing attention, along with efficient SSC purification technology as a necessary technical support; however, the safety of such application in patients with tumors remains controversial. METHODS In this study, we used a green fluorescent protein mouse xenograft model of B cell acute lymphocytic leukemia. We isolated and purified SSCs from the testicular tissue of model mice using density gradient centrifugation, immune cell magnetic bead separation, and flow cytometry. The purified SSCs were transplanted into convoluted seminiferous tubules of the nude mice and C57BL/6 male mice subjected to busulfan. The development and proliferation of SSCs in the recipient testis were periodically tested, along with whether B cell acute lymphocytic leukemia was induced following SSC implantation. The genetic characteristics of the offspring obtained from natural mating were also observed. RESULTS In testicular leukemia model mice, a large number of BALL cells infiltrated into the seminiferous tubule, spermatogenic cells, and sperm cells in the testis tissue decreased. After spermatogonial stem cell transplantation, the transplanted SSCs purified by immunomagnetic beads and flow cytometry methods colonized and proliferated extensively in the basement of the seminiferous tubules of mice; a large number of spermatogenic cells and sperm were found in recipient testicular tissue after 12 weeks of SSC transplantation. In leukemia detection in nude mice after transplantation in the three SSC purification groups, a large number of BALL cells could be detected in the blood of recipient mice 2-3 weeks after transplantation in the density gradient centrifugation group, but not in the blood of the flow cytometry sorting group and the immunomagnetic bead group after 16 weeks of observation. CONCLUSIONS In this study, we confirmed that immunomagnetic beads and flow cytometry methods of purifying SSCs from the testicular tissue of the testicular leukemia mouse model could be safely applied to the SSC transplantation technology without concomitant tumor implantation. The results thus provide a theoretical basis for the application of tumor SSC cryopreservation for fertility preservation in patients with tumors.
Collapse
Affiliation(s)
- Jia Tian
- General Hospital of Ningxia Medical University/Human Sperm Bank of Ningxia, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Ke Ma
- Clinical College, Ningxia Medical University, Yinchuan, 750001, China
| | - Cheng-Bin Pei
- General Hospital of Ningxia Medical University/Human Sperm Bank of Ningxia, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Shao-Hua Zhang
- Clinical College, Ningxia Medical University, Yinchuan, 750001, China
| | - Xue Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Yue Zhou
- General Hospital of Ningxia Medical University/Human Sperm Bank of Ningxia, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Bei Yan
- General Hospital of Ningxia Medical University/Human Sperm Bank of Ningxia, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Hong-Yan Wang
- General Hospital of Ningxia Medical University/Human Sperm Bank of Ningxia, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China
| | - Liang-Hong Ma
- General Hospital of Ningxia Medical University/Human Sperm Bank of Ningxia, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750001, China.
| |
Collapse
|
9
|
de Siqueira-Silva DH, Saito T, Dos Santos-Silva AP, da Silva Costa R, Psenicka M, Yasui GS. Biotechnology applied to fish reproduction: tools for conservation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1469-1485. [PMID: 29707740 DOI: 10.1007/s10695-018-0506-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
This review discusses the new biotechnological tools that are arising and promising for conservation and enhancement of fish production, mainly regarding the endangered and the most economically important species. Two main techniques, in particular, are available to avoid extinction of endangered fish species and to improve the production of commercial species. Germ cell transplantation technology includes a number of approaches that have been studied, such as the transplantation of embryo-to-embryo blastomere, embryo-to-embryo differentiated PGC, larvae to larvae and embryo differentiated PGC, transplantation of spermatogonia from adult to larvae or between adults, and oogonia transplantation. However, the success of germ cell transplantation relies on the prior sterilization of fish, which can be performed at different stages of fish species development by means of several protocols that have been tested in order to achieve the best approach to produce a sterile fish. Among them, fish hybridization and triploidization, germline gene knockdown, hyperthermia, and chemical treatment deserve attention based on important results achieved thus far. This review currently used technologies and knowledge about surrogate technology and fish sterilization, discussing the stronger and the weaker points of each approach.
Collapse
Affiliation(s)
- Diógenes Henrique de Siqueira-Silva
- UNIFESSPA - Federal University of South and Southeast of Para - Institute for Health and Biological Studies - IESB, Faculty of Biology - FACBIO, Laboratory of Neuroscience and Behavior, Marabá, Para, Brazil.
| | - Taiju Saito
- Nishiura Station, South Ehime Fisheries Research Center, Ehime University, Uchidomari, Ainan, Japan
| | | | - Raphael da Silva Costa
- PPG in Animal Biology, UNESP - Paulista State University, São José do Rio Preto, São Paulo, Brazil
| | - Martin Psenicka
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - George Shigueki Yasui
- Laboratory of Fish Biotechnology, National Center for Research and Conservation of Continental Fish, Chico Mendes Institute of Biodiversity Conservation, Pirassununga, São Paulo, Brazil
| |
Collapse
|