1
|
Ndandala CB, Zhou Q, Li Z, Guo Y, Li G, Chen H. Identification of Insulin-like Growth Factor (IGF) Family Genes in the Golden Pompano, Trachinotus ovatus: Molecular Cloning, Characterization and Gene Expression. Int J Mol Sci 2024; 25:2499. [PMID: 38473747 DOI: 10.3390/ijms25052499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Insulin-like growth factors (IGFs) are hormones that primarily stimulate and regulate animal physiological processes. In this study, we cloned and identified the open reading frame (ORF) cDNA sequences of IGF family genes: the insulin-like growth factor 1 (IGF1), insulin-like growth factor 2 (IGF2), and insulin-like growth factor 3 (IGF3). We found that IGF1, IGF2, and IGF3 have a total length of 558, 648, and 585 base pairs (bp), which encoded a predicted protein with 185, 215, and 194 amino acids (aa), respectively. Multiple sequences and phylogenetic tree analysis showed that the mature golden pompano IGFs had been conserved and showed high similarities with other teleosts. The tissue distribution experiment showed that IGF1 and IGF2 mRNA levels were highly expressed in the liver of female and male fish. In contrast, IGF3 was highly expressed in the gonads and livers of male and female fish, suggesting a high influence on fish reproduction. The effect of fasting showed that IGF1 and mRNA expression had no significant difference in the liver but significantly decreased after long-term (7 days) fasting in the muscles and started to recover after refeeding. IGF2 mRNA expression showed no significant difference in the liver but had a significant difference in muscles for short-term (2 days) and long-term fasting, which started to recover after refeeding, suggesting muscles are more susceptible to both short-term and long-term fasting. In vitro incubation of 17β-estradiol (E2) was observed to decrease the IGF1 and IGF3 mRNA expression level in a dose- (0.1, 1, and 10 μM) and time- (3, 6, and 12 h) dependent manner. In addition, E2 had no effect on IGF2 mRNA expression levels in a time- and dose-dependent manner. The effect of 17α-methyltestosterone (MT) in vitro incubation was observed to significantly increase the IGF3 mRNA expression level in a time- and dose-dependent manner. MT had no effect on IGF2 mRNA but was observed to decrease the IGF1 mRNA expression in the liver. Taken together, these data indicate that E2 and MT may either increase or decrease IGF expression in fish; this study provides basic knowledge and understanding of the expression and regulation of IGF family genes in relation to the nutritional status, somatic growth, and reproductive endocrinology of golden pompano for aquaculture development.
Collapse
Affiliation(s)
- Charles Brighton Ndandala
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
| | - Qi Zhou
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiyuan Li
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuwen Guo
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangli Li
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huapu Chen
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524025, China
| |
Collapse
|
2
|
Zhang J, Li F, Zhang X, Xie T, Qin H, Lv J, Gao Y, Li M, Gao Y, Jia Y. Melatonin Improves Turbot Oocyte Meiotic Maturation and Antioxidant Capacity, Inhibits Apoptosis-Related Genes mRNAs In Vitro. Antioxidants (Basel) 2023; 12:1389. [PMID: 37507927 PMCID: PMC10376768 DOI: 10.3390/antiox12071389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
High-quality eggs are essential for the sustainability of commercial aquaculture production. Melatonin is a potent candidate for regulating the growth and maturation of oocytes. Therefore, research on the effect of melatonin on marine fish oocytes in vitro has been conducted. The present study successfully established a culture system of turbot (Scophthalmus maximus) oocytes in vitro and investigated the effect of melatonin on oocyte meiotic maturation, antioxidant capacity, and the expression of apoptosis-related genes. The cultures showed that turbot Scophthalmus maximus late-vitellogenic denuded oocytes, with diameters of 0.5-0.7 mm, had a low spontaneous maturation rate and exhibited a sensitive response to 17α, 20β-dihydroxyprogesterone (DHP) treatment in vitro. Melatonin increased by four times the rate of oocyte germinal vesicle breakdown (GVBD) in a concentration- and time-dependent manner. The mRNA of melatonin receptor 1 (mtnr1) was significantly upregulated in the oocyte and follicle after treatment with melatonin (4.3 × 10-9 M) for 24 h in vitro, whereas melatonin receptor 2 (mtnr2) and melatonin receptor 3 (mtnr3) remained unchanged. In addition, melatonin significantly increased the activities of catalase, glutathione peroxidase, and superoxide dismutase, as well as the levels of glutathione, while decreasing the levels of malondialdehyde and reactive oxygen species (ROS) levels in turbot oocytes and follicles cultures in vitro. p53, caspase3, and bax mRNAs were significantly downregulated in oocytes and follicles, whereas bcl2 mRNAs were significantly upregulated. In conclusion, the use of turbot late-vitellogenesis oocytes (0.5-0.7 mm) is suitable for establishing a culture system in vitro. Melatonin promotes oocyte meiotic maturation and antioxidative capacity and inhibits apoptosis via the p53-bax-bcl2 and caspase-dependent pathways, which have important potential to improve the maturation and quality of oocytes.
Collapse
Affiliation(s)
- Jiarong Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Feixia Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyu Zhang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ting Xie
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hongyu Qin
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Junxian Lv
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yunhong Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Mingyue Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yuntao Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
3
|
Guo Y, Zhang K, Geng W, Chen B, Wang D, Wang Z, Tian W, Li H, Zhang Y, Jiang R, Li Z, Tian Y, Kang X, Liu X. Evolutionary analysis and functional characterization reveal the role of the insulin-like growth factor system in a diversified selection of chickens (Gallus gallus). Poult Sci 2022; 102:102411. [PMID: 36587453 PMCID: PMC9816805 DOI: 10.1016/j.psj.2022.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
The insulin-like growth factor (IGF) system plays an indispensable role in embryonic and postnatal development in mammals. However, the effects of the system on growth, carcass, and egg-laying traits, and diversified selection have not been systematically studied in chickens. In the present study, firstly the composition and gene structures of the chicken IGF system were investigated using phylogenetic tree and conserved synteny analysis. Then the effects of the genetic variations in the IGF system genes on breeding of specialized varieties were explored by principal component analysis. In addition, the spatiotemporal expression properties of the genes in this system were analyzed by RT-qPCR and the functions of the genes in egg production performance and growth were explored by association study. Moreover, the effects of IGF-binding proteins 3 (IGFBP3) on skeletal muscle development in chicken were investigated by cell cycle analysis, 5-ethynyl-2'-deoxyuridine (EdU) and Cell Counting Kit-8 (CCK-8) assays. The results showed that the chicken IGF system included 13 members which could be classified into 3 groups based on their amino acid sequences: IGF binding proteins 1 to 5 and 7 (IGFBP1-5 and 7) belonged to the first group; IGF 1 and 2 (IGF1 and IGF2), and IGF 1 and 2 receptor (IGF1R and IGF2R) belonged to the second group; and IGF2 binding proteins 1-3 (IGF2BP1-3) belonged to the third group. The IGF2BP1 and 3, and IGFBP2, 3, and 7 genes likely contributed more to the formation of both the specialized meat-type and egg-type lines, whereas IGFBP1 and 5 likely contributed more to the formation of the egg-type lines. The SNPs in the IGF2BP3 and IGFBP2 and 5 genes were significantly associated with egg number, and SNPs in the IGFBP3 promoter region were significantly associated with body weight, breast muscle weight and leg muscle weight. The IGFBP3 inhibited proliferation but promoted differentiation of chicken primary myoblasts (CPMs). These results provide insights into the roles of the IGF system in the diversified selection of chickens. The SNPs associated with egg-laying performance, growth, and carcass traits could be used as genetic markers for breeding selection of chickens in the future.
Collapse
Affiliation(s)
- Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ke Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Wanzhuo Geng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Botong Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China,Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China,International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China.
| |
Collapse
|
4
|
Zheng JL, Peng LB, Xia LP, Li J, Zhu QL. Effects of continuous and intermittent cadmium exposure on HPGL axis, GH/IGF axis and circadian rhythm signaling and their consequences on reproduction in female zebrafish: Biomarkers independent of exposure regimes. CHEMOSPHERE 2021; 282:130879. [PMID: 34087554 DOI: 10.1016/j.chemosphere.2021.130879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Typical biomarkers of cadmium (Cd) pollution have well been confirmed in fish from continuous exposure pattern. However, in a natural environment, fish may be exposed to Cd intermittently. In this study, juvenile female zebrafish were exposed for 48 days to 10 μg/L Cd continuously, 20 μg/L for 1 day in every 2 days or 30 μg/L for 1 day in every 3 days. The toxic effects were evaluated using 8 various physiological and biochemical endpoints like specific growth rate (SGR), 17β-estradiol (E2) and vitellogenin (VTG) concentrations in plasma, reproductive parameters (gonadosomatic index (GSI), egg-laying amount, spawning percentage, and hatching and mortality rate of embryos). Transcription of 59 genes related to hypothalamic-pituitary-gonadal-liver (HPGL) axis, circadian rhythm signaling and insulin-like growth factor (IGF) system was examined. SGR, spawning percentage, E2 and VTG levels declined in fish exposed to 10 and 20 μg/L Cd but remained relatively stable in fish exposed to 30 μg/L Cd. Exposure to 10, 20 and 30 μg/L Cd significantly reduced GSI, hatching rate and mortality rate. Similarly, mRNA expression of 27 genes were sensitive to both continuous and intermittent Cd exposure. Among these genes, expression levels of 10 genes had more than 5-fold increase or decrease, including mRNA levels of vtg1, vtg2, vtg3, esr1, igf2a, igf2b, igfbp5b, nr1d1, gnrh3 and gnrhr4. The most sensitive molecular biomarker was vtg3 expression with 1500-3100 fold increase in the liver. The present study, for the first time, provides effective candidate biomarkers for Cd, which are independent of exposure regimes.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Li-Bin Peng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Li-Ping Xia
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jiji Li
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Qing-Ling Zhu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
5
|
Chandhini S, Trumboo B, Jose S, Varghese T, Rajesh M, Kumar VJR. Insulin-like growth factor signalling and its significance as a biomarker in fish and shellfish research. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1011-1031. [PMID: 33987811 DOI: 10.1007/s10695-021-00961-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
The insulin-like growth factor signalling system comprises insulin-like growth factors, insulin-like growth factor receptors and insulin-like growth factor-binding proteins. Along with the growth hormones, insulin-like growth factor signalling is very pivotal in the growth and development of all vertebrates. In fishes, insulin-like growth factors play an important role in osmoregulation, besides the neuroendocrine regulation of growth. Insulin-like growth factor concentration in plasma can assess the growth in fishes and shellfishes and therefore widely applied in nutritional research as an indicator to evaluate the performance of selected nutrients. The present review summarizes the role of insulin-like growth factor signalling in fishes and shellfishes, its significance in aquaculture and in evaluating growth, reproduction and development, and discusses the utility of this system as biomarkers for early indication of growth in aquaculture.
Collapse
Affiliation(s)
- S Chandhini
- Centre of Excellence in Sustainable Aquaculture and Aquatic Animal Health Management (CAAHM), Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Bushra Trumboo
- Centre of Excellence in Sustainable Aquaculture and Aquatic Animal Health Management (CAAHM), Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India
| | - Seena Jose
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Kochi, 682016, Kerala, India
| | - Tincy Varghese
- Fish Physiology and Biochemistry Division, ICAR-Central Institute of Fisheries Education, Off-Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - M Rajesh
- ICAR-Directorate of Coldwater Fisheries Research, Anusandhan Bhawan, Bhimtal, 263136, Uttarakhand, India
| | - V J Rejish Kumar
- Centre of Excellence in Sustainable Aquaculture and Aquatic Animal Health Management (CAAHM), Department of Aquaculture, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, 682506, Kerala, India.
| |
Collapse
|
6
|
Bertolini F, Jørgensen MGP, Henkel C, Dufour S, Tomkiewicz J. Unravelling the changes during induced vitellogenesis in female European eel through RNA-Seq: What happens to the liver? PLoS One 2020; 15:e0236438. [PMID: 32790680 PMCID: PMC7425897 DOI: 10.1371/journal.pone.0236438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
The life cycle of European eel (Anguilla anguilla), a catadromous species, is complex and enigmatic. In nature, during the silvering process prior to their long spawning migration, reproductive development is arrested, and they cease feeding. In studies of reproduction using hormonal induction, eels are equivalently not feed. Therefore, in female eels that undergo vitellogenesis, the liver plays different, essential roles being involved both in vitellogenins synthesis and in reallocating resources for the maintenance of vital functions, performing the transoceanic reproductive migration and completing reproductive development. The present work aimed at unravelling the major transcriptomic changes that occur in the liver during induced vitellogenesis in female eels. mRNA-Seq data from 16 animals (eight before induced vitellogenesis and eight after nine weeks of hormonal treatment) were generated and differential expression analysis was performed comparing the two groups. This analysis detected 1,328 upregulated and 1,490 downregulated transcripts. Overrepresentation analysis of the upregulated genes included biological processes related to biosynthesis, response to estrogens, mitochondrial activity and localization, while downregulated genes were enriched in processes related to morphogenesis and development of several organs and tissues, including liver and immune system. Among key genes, the upregulated ones included vitellogenin genes (VTG1 and VTG2) that are central in vitellogenesis, together with ESR1 and two novel genes not previously investigated in European eel (LMAN1 and NUPR1), which have been linked with reproduction in other species. Moreover, several upregulated genes, such as CYC1, ELOVL5, KARS and ACSS1, are involved in the management of the effect of fasting and NOTCH, VEGFA and NCOR are linked with development, autophagy and liver maintenance in other species. These results increase the understanding of the molecular changes that occur in the liver during vitellogenesis in this complex and distinctive fish species, bringing new insights on European eel reproduction and broodstock management.
Collapse
Affiliation(s)
- Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
- * E-mail:
| | | | - Christiaan Henkel
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Sylvie Dufour
- Laboratory BOREA, Museum National d’Histoire Naturelle, CNRS, Sorbonne University, Paris, France
| | - Jonna Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
7
|
Gao Y, Gao Y, Huang B, Meng Z, Jia Y. Reference gene validation for quantification of gene expression during ovarian development of turbot (Scophthalmus maximus). Sci Rep 2020; 10:823. [PMID: 31964949 PMCID: PMC6972784 DOI: 10.1038/s41598-020-57633-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) is a powerful and sensitive method used in gene expression analysis. Suitable reference genes, which are stable under all experimental circumstances and tissues significantly improve the accuracy of qRT-PCR data. In this study, the stability of six genes, namely, 18S ribosomal RNA (18s), beta-actin (actb), elongation factor 1-alpha (ef1α), glyceraldehyde-3-phosphate-dehydrogenase (gapdh), cathepsin D (ctsd), and beta-2-microglobulin (b2m) were evaluated as potential references for qRT-PCR analysis. The genes were examined in the hypothalamus-pituitary-ovary-liver (HPOL) axis throughout turbot ovarian development via using the geNorm, NormFinder and BestKeeper algorithms. Results showed that the most stable reference genes were ef1α, actb, and ctsd in the hypothalamus, pituitary, ovary and liver, respectively. The best-suited gene combinations for normalization were 18s, ef1α, and ctsd in the hypothalamus; actb, ctsd, and 18s in the pituitary; actb, and ctsd in the ovary; gapdh and ctsd in the liver. Moreover, the expression profile of estrogen receptor α (erα) manifested no significant difference normalization to the aforementioned best-suited gene during turbot ovarian development. However, no single gene or pair of genes is suitable as an internal control and account for the amplification differences among the four tissues during ovarian development. In summary, these results provide a basic data for the optimal reference gene selection and obtain highly accurate normalization of qRT-PCR data in HPOL axis-related gene expression analysis during turbot ovarian development.
Collapse
Affiliation(s)
- Yunhong Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Yuntao Gao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Bin Huang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
| | - Zhen Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China
| | - Yudong Jia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Qingdao, 266071, China.
| |
Collapse
|
8
|
Celino-Brady FT, Petro-Sakuma CK, Breves JP, Lerner DT, Seale AP. Early-life exposure to 17β-estradiol and 4-nonylphenol impacts the growth hormone/insulin-like growth-factor system and estrogen receptors in Mozambique tilapia, Oreochromis mossambicus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105336. [PMID: 31733503 PMCID: PMC6935514 DOI: 10.1016/j.aquatox.2019.105336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/28/2019] [Accepted: 10/14/2019] [Indexed: 05/31/2023]
Abstract
It is widely recognized that endocrine disrupting chemicals (EDCs) released into the environment through anthropogenic activities can have short-term impacts on physiological and behavioral processes and/or sustained or delayed long-term developmental effects on aquatic organisms. While numerous studies have characterized the effects of EDCs on temperate fishes, less is known on the effects of EDCs on the growth and reproductive physiology of tropical species. To determine the long-term effects of early-life exposure to common estrogenic chemicals, we exposed Mozambique tilapia (Oreochromis mossambicus) yolk-sac fry to 17β-estradiol (E2) and nonylphenol (NP) and subsequently characterized the expression of genes involved in growth and reproduction in adults. Fry were exposed to waterborne E2 (0.1 and 1 μg/L) and NP (10 and 100 μg/L) for 21 days. After the exposure period, juveniles were reared for an additional 112 days until males were sampled. Gonadosomatic index was elevated in fish exposed to E2 (0.1 μg/L) while hepatosomatic index was decreased by exposure to NP (100 μg/L). Exposure to E2 (0.1 μg/L) induced hepatic growth hormone receptor (ghr) mRNA expression. The high concentration of E2 (1 μg/L), and both concentrations of NP, increased hepatic insulin-like growth-factor 1 (igf1) expression; E2 and NP did not affect hepatic igf2 and pituitary growth hormone (gh) levels. Both E2 (1 μg/L) and NP (10 μg/L) induced hepatic igf binding protein 1b (igfbp1b) levels while only NP (100 μg/L) induced hepatic igfbp2b levels. By contrast, hepatic igfbp6b was reduced in fish exposed to E2 (1 μg/L). There were no effects of E2 or NP on hepatic igfbp4 and igfbp5a expression. Although the expression of three vitellogenin transcripts was not affected, E2 and NP stimulated hepatic estrogen receptor (erα and erβ) mRNA expression. We conclude that tilapia exposed to E2 and NP as yolk-sac fry exhibit subsequent changes in the endocrine systems that control growth and reproduction during later life stages.
Collapse
Affiliation(s)
- Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Cody K Petro-Sakuma
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Darren T Lerner
- University of Hawai'i Sea Grant College Program, University of Hawai'i at Mānoa, 2525 Correa Road, Honolulu, HI 96822, USA.
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| |
Collapse
|