1
|
Roohi TF, Faizan S, Shaikh MF, Krishna KL, Mehdi S, Kinattingal N, Arulsamy A. Beyond drug discovery: Exploring the physiological and methodological dimensions of zebrafish in diabetes research. Exp Physiol 2024; 109:847-872. [PMID: 38279951 PMCID: PMC11140176 DOI: 10.1113/ep091587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024]
Abstract
Diabetes mellitus is a chronic disease that is now considered a global epidemic. Chronic diabetes conditions include type 1 and type 2 diabetes, both of which are normally irreversible. As a result of long-term uncontrolled high levels of glucose, diabetes can progress to hyperglycaemic pathologies, such as cardiovascular diseases, retinopathy, nephropathy and neuropathy, among many other complications. The complete mechanism underlying diabetes remains unclear due to its complexity. In this scenario, zebrafish (Danio rerio) have arisen as a versatile and promising animal model due to their good reproducibility, simplicity, and time- and cost-effectiveness. The Zebrafish model allows us to make progress in the investigation and comprehension of the root cause of diabetes, which in turn would aid in the development of pharmacological and surgical approaches for its management. The current review provides valuable reference information on zebrafish models, from the first zebrafish diabetes models using genetic, disease induction and chemical approaches, to the newest ones that further allow for drug screening and testing. This review aims to update our knowledge related to diabetes mellitus by gathering the most authoritative studies on zebrafish as a chemical, dietary and insulin induction, and genetic model for diabetes research.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Syed Faizan
- Department of Pharmaceutical ChemistryJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Mohd. Farooq Shaikh
- School of Dentistry and Medical SciencesCharles Sturt UniversityOrangeNew South WalesAustralia
| | - Kamsagara Linganna Krishna
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Seema Mehdi
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Nabeel Kinattingal
- Department of PharmacologyJSS College of PharmacyJSS Academy of Higher Education and ResearchMysuruKarnatakaIndia
| | - Alina Arulsamy
- Neuropharmacology Research LaboratoryJeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwaySelangorMalaysia
| |
Collapse
|
2
|
Sanni O, Fasemore T, Nkomozepi P. Non-Genetic-Induced Zebrafish Model for Type 2 Diabetes with Emphasis on Tools in Model Validation. Int J Mol Sci 2023; 25:240. [PMID: 38203409 PMCID: PMC10778736 DOI: 10.3390/ijms25010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The unrelenting increase in the incidence of type 2 diabetes (T2D) necessitates the urgent need for effective animal models to mimic its pathophysiology. Zebrafish possess human-like metabolic traits and share significant genetic similarities, making them valuable candidates for studying metabolic disorders, including T2D. This review emphasizes the critical role of animal models in diabetes research, especially focusing on zebrafish as an alternative model organism. Different approaches to a non-genetic model of T2D in zebrafish, such as the glucose solution, diet-induced, chemical-induced, and combined diet-induced and glucose solution methods, with an emphasis on model validation using indicators of T2D, were highlighted. However, a significant drawback lies in the validation of these models. Some of these models have not extensively demonstrated persistent hyperglycemia or response to insulin resistance and glucose tolerance tests, depicted the morphology of the pancreatic β-cell, or showed their response to antidiabetic drugs. These tools are crucial in T2D pathology. Future research on non-genetic models of T2D in zebrafish must extensively focus on validating the metabolic deficits existing in the model with the same metabolic defects in humans and improve on the existing models for a better understanding of the molecular mechanisms underlying T2D and exploring potential therapeutic interventions.
Collapse
Affiliation(s)
- Olakunle Sanni
- Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein 2028, South Africa; (T.F.); (P.N.)
| | | | | |
Collapse
|
3
|
Research Progress on the Construction and Application of a Diabetic Zebrafish Model. Int J Mol Sci 2023; 24:ijms24065195. [PMID: 36982274 PMCID: PMC10048833 DOI: 10.3390/ijms24065195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Diabetes is a metabolic disease characterized by high blood glucose levels. With economic development and lifestyle changes, the prevalence of diabetes is increasing yearly. Thus, it has become an increasingly serious public health problem in countries around the world. The etiology of diabetes is complex, and its pathogenic mechanisms are not completely clear. The use of diabetic animal models is helpful in the study of the pathogenesis of diabetes and the development of drugs. The emerging vertebrate model of zebrafish has many advantages, such as its small size, large number of eggs, short growth cycle, simple cultivation of adult fish, and effective improvement of experimental efficiency. Thus, this model is highly suitable for research as an animal model of diabetes. This review not only summarizes the advantages of zebrafish as a diabetes model, but also summarizes the construction methods and challenges of zebrafish models of type 1 diabetes, type 2 diabetes, and diabetes complications. This study provides valuable reference information for further study of the pathological mechanisms of diabetes and the research and development of new related therapeutic drugs.
Collapse
|
4
|
Sudhakaran G, Rajesh R, Guru A, Arasu MV, Gopinath P, Arockiaraj J. Nimbin analogs N5 and N7 regulate the expression of lipid metabolic genes and inhibit lipid accumulation in high-fat diet-induced zebrafish larvae: An antihyperlipidemic study. Tissue Cell 2023; 80:102000. [PMID: 36542946 DOI: 10.1016/j.tice.2022.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Excess accumulation of lipids leads to obesity. Triterpenoids are a group of plant compounds which poses various biological activities. The biological activities of Nimbin analogs N5 and N7 were addressed in this study on inhibiting lipid aggregation and underlying the derivatives molecular mechanisms for a therapeutical approach. AIM This study aims to evaluate the anti-adipogenic activity of semi-natural Nimbin analogs, N5 and N7, on zebrafish larvae induced with oxidative stress due to a high-fat diet (HFD) and adipogenesis using specific fluorescent stains. MATERIALS AND METHODS Zebrafish at 4 days post fertilized (dpf) larvae were divided into groups for the HFD diet along with exposure to various concentrations of N5 and N7. HFD induced accumulation of neutral lipids and triglycerides (Oil Red O and Nile red staining, respectively) with weight gain, which generated intracellular ROS (DCFH-DA staining) and superoxide anion production (DHE staining) with depleted glutathione levels (NDA staining) were assayed. HFD exposure promoted the accumulation of inflammatory macrophages (Neutral red staining) and impaired glucose metabolism (2NBDG staining). The ability of N5 and N7 to reduce total regulating lipogenic specific genes C/EBP-α, SREBP-1 and FAS were evaluated using relative gene expression. KEY FINDINGS The Nimbin analogues N5 and N7 suppressed adipogenesis, forming intracellular ROS and superoxide anion while simultaneously restoring glutathione levels. The analogues significantly lowered total TC and TG levels, prevented inflammatory macrophage build-up and boosted glucose absorption. Also, N5 and N7 down-regulate the lipogenic-specific genes. SIGNIFICANCE Nimbin analogs N5 and N7 enhance lipolysis and inhibit adipogenesis in in-vivo zebrafish larvae model.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Ravi Rajesh
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Ajay Guru
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Pusparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India.
| |
Collapse
|
5
|
Sudhakaran G, Rajesh R, Guru A, Haridevamuthu B, Murugan R, Bhuvanesh N, Wadaan MA, Mahboob S, Juliet A, Gopinath P, Arockiaraj J. Deacetylated nimbin analog N2 fortifies alloxan-induced pancreatic β-cell damage in insulin-resistant zebrafish larvae by upregulating phosphoenolpyruvate carboxykinase (PEPCK) and insulin levels. Toxicol Appl Pharmacol 2022; 454:116229. [PMID: 36089001 DOI: 10.1016/j.taap.2022.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022]
Abstract
This study aims to evaluate the protective behaviour of N2, a semi-natural analog of nimbin, for its anti-diabetic efficacy against alloxan-induced oxidative damage and β-cell dysfunction in in-vivo zebrafish larvae. A 500 μM of alloxan was exposed to zebrafish larvae for 24 h to induce oxidative stress in the pancreatic β-cells and co-exposed with N2 to study the protection of N2 by inhibiting ROS by DCFH-DA, DHE and NDA staining along with Cellular damage, apoptosis and lipid peroxidation. The zebrafish was further exposed to 500 μM alloxan for 72 h to induce β-cell destruction along with depleted glucose uptake and co-exposed to N2 to study the protective mechanism. Glucose levels were estimated, and PCR was used to verify the mRNA expression of phosphoenolpyruvate carboxykinase (PEPCK) and insulin. Alloxan induced (24 h) oxidative stress in the pancreatic β-cells in which N2's co-exposure inhibited ROS by eliminating O-₂ radicals and restoring the glutathione levels, thus preventing cellular damage and lipid peroxidation. The zebrafish exposed to 500 μM alloxan for 72 h was observed with β-cell destruction along with depleted glucose uptake when stained with 2NBDG, wherein N2 was able to protect the pancreatic β-cells from oxidative damage, promoted high glucose uptake and reduced glucose levels. N2 stimulated insulin production and downregulated PEPCK by inhibiting gluconeogenesis, attenuating post-prandial hyperglycemia. N2 may contribute to anti-oxidant protection against alloxan-induced β-cell damage and anti-hyperglycemic activity, restoring insulin function and suppressing PEPCK expression.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ravi Rajesh
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - B Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India
| | - Nattamai Bhuvanesh
- Department of Chemistry, Texas A&M University, College Station, TX 77842, USA
| | - Mohammad Ahmad Wadaan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shalid Mahboob
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Annie Juliet
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, University Station A4800, Austin, TX 78712, USA
| | - Pushparathinam Gopinath
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603 203 Chennai, Tamil Nadu, India.
| |
Collapse
|
6
|
Faraj N, Duinkerken BHP, Carroll EC, Giepmans BNG. Microscopic modulation and analysis of islets of Langerhans in living zebrafish larvae. FEBS Lett 2022; 596:2497-2512. [DOI: 10.1002/1873-3468.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Noura Faraj
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - B. H. Peter Duinkerken
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - Elizabeth C. Carroll
- Department of Imaging Physics Delft University of Technology Delft, 2628 CJ The Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| |
Collapse
|
7
|
Ghaddar B, Diotel N. Zebrafish: A New Promise to Study the Impact of Metabolic Disorders on the Brain. Int J Mol Sci 2022; 23:ijms23105372. [PMID: 35628176 PMCID: PMC9141892 DOI: 10.3390/ijms23105372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Zebrafish has become a popular model to study many physiological and pathophysiological processes in humans. In recent years, it has rapidly emerged in the study of metabolic disorders, namely, obesity and diabetes, as the regulatory mechanisms and metabolic pathways of glucose and lipid homeostasis are highly conserved between fish and mammals. Zebrafish is also widely used in the field of neurosciences to study brain plasticity and regenerative mechanisms due to the high maintenance and activity of neural stem cells during adulthood. Recently, a large body of evidence has established that metabolic disorders can alter brain homeostasis, leading to neuro-inflammation and oxidative stress and causing decreased neurogenesis. To date, these pathological metabolic conditions are also risk factors for the development of cognitive dysfunctions and neurodegenerative diseases. In this review, we first aim to describe the main metabolic models established in zebrafish to demonstrate their similarities with their respective mammalian/human counterparts. Then, in the second part, we report the impact of metabolic disorders (obesity and diabetes) on brain homeostasis with a particular focus on the blood-brain barrier, neuro-inflammation, oxidative stress, cognitive functions and brain plasticity. Finally, we propose interesting signaling pathways and regulatory mechanisms to be explored in order to better understand how metabolic disorders can negatively impact neural stem cell activity.
Collapse
|
8
|
Wang L, Ma J, Wu W, Fang Y, Liu F, Yang Q, Hu X, Gu X, He Z, Sun D, Jin L, Zhang X. Effect of aerobic exercise as a treatment on type 2 diabetes mellitus with depression-like behavior zebrafish. Life Sci 2022; 300:120578. [PMID: 35489565 DOI: 10.1016/j.lfs.2022.120578] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Depression is the most known complication of type 2 diabetes mellitus (T2DM). Aerobic exercise improves glycemic control in T2DM, although the underlying mechanisms of comorbid depression-like behaviors in T2DM have not yet been fully elucidated. METHODS 120 zebrafish were randomly assigned to four groups: Control, T2DM, T2DM + metformin, and T2DM + aerobic exercise. Then, all animals except the control group were fed with high glucose fairy shrimp (~40 g/kg/day) and exposed reserpine (40 μg/ml for 20 min) for 10 days. Here, behavioral tests were used for model verification. Following the verification, all groups were treated as before. Additionally, the T2DM + metformin group received metformin (~10.6 mg/kg/day) at the same time, while the T2DM + aerobic exercise group received aerobic exercise 30 min/day. Finally, blood glucose and behavioral tests, as well as protein and molecular levels were determined at Day 11 and 12. RESULTS Aerobic exercise alleviated depressive-like behavior and enhanced the levels of antidepressant biomarkers (NE, 5-HIAA) in zebrafish after 10 consecutive days of exercise. Additionally, 10 consecutive days of aerobic exercise decreased the levels of inflammatory biomarkers (IFN-γ, IL-1, IL-4) and depressive biomarkers (cortisol). Meanwhile, it also aided in the reduction of CD11b, IL-6, IL-6R, and caspase-3 expression to combat the neuroinflammation induced by T2DM, mediated the BDNF-TrkB pathway, and increased Bcl-2/Bax levels. CONCLUSION Given the remarkable similarity in neurochemistry between humans and zebrafish, this study supports the effectiveness of aerobic exercise as clinical guidance in preventing and treating T2DM complicated with depression.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Fan Liu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xiang Hu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuejiang Gu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhiying He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|