1
|
Yang G, Yang B, Wang S, Liang X, Li C, Zhang Y, Zhang X, Chang X, Meng X. Cloning grass carp (Ctenopharyngodon idella) ccdc3 and its expression affected by nutrition state, insulin, and glucagon. JOURNAL OF FISH BIOLOGY 2024; 104:624-632. [PMID: 37943095 DOI: 10.1111/jfb.15614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
As an adipokine, coiled-coil domain-containing 3 (CCDC3) plays multiple physiological roles in fatty liver, lipid metabolism, and abdominal obesity. Grass carp was selected as the experimental animal in this study to investigate the roles of Ccdc3 in teleosts. Results showed that the open reading frame (ORF) of cloned ccdc3 was 831 bp and encoded 276 amino acids. Three N-glycosylation sites and a predicted coiled-coil domain motif were located in the identified Ccdc3. Moreover, a nuclear localization signal (NLS) was contained in the coiled-coil domain motif of the identified Ccdc3. The results on tissue distribution revealed that ccdc3 was highly detected in grass carp fat and brain tissue. In the oral glucose tolerance test (OGTT), the expression of ccdc3 increased remarkably in the brain, hypothalamus, and visceral fat in the glucose treatment group. In the fasting and refeeding experiment, the ccdc3 expression levels were remarkably reduced in the brain, hypothalamus, and visceral fat after 14 days of fasting. In the refeeding group, the ccdc3 expression levels were considerably elevated compared with those in the fasting group. In the induced overfeeding experiment, the ccdc3 expression increased remarkably in the hepatopancreas, brain, and visceral fat tissues. The ccdc3 expression in the primary hepatocytes was remarkably increased with glucose, oleic acid, and insulin treatment. However, ccdc3 expression was markedly decreased with glucagon treatment. In conclusion, these results indicate that Ccdc3 is involved in regulating glucose and lipid metabolism of teleosts.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang, PR China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, PR China
| | - Boya Yang
- College of Fisheries, Henan Normal University, Xinxiang, PR China
| | - Sunan Wang
- College of Fisheries, Henan Normal University, Xinxiang, PR China
| | - Xiaomin Liang
- College of Fisheries, Henan Normal University, Xinxiang, PR China
| | - Chengquan Li
- College of Fisheries, Henan Normal University, Xinxiang, PR China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, PR China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, PR China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang, PR China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, PR China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang, PR China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, PR China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang, PR China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, PR China
| |
Collapse
|
2
|
Hossian S, Reza MF, Rahman MM, Mariom, Alam MJ, Razzak MA, Mollah MFA, Tiersch TR, Sarder MRI. Use of Cryopreserved Sperm of Grass Carp ( Ctenopharyngodon idella) for Seed Production at the Hatchery Level of Bangladesh-A Need for Development of Germplasm Repositories. AQUACULTURE RESEARCH 2024; 2024:9655558. [PMID: 39391044 PMCID: PMC11465967 DOI: 10.1155/2024/9655558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024]
Abstract
Grass carp (Ctenopharyngodon idella), a freshwater nonnative fish species, is a potential aquaculture candidate in Bangladesh. The seed of the species is produced in the hatcheries by hypophysation, but the quality of seedstock of grass carp is deteriorated due to inbreeding, negative selection, and interspecific introgression among fishes. To increase the availability of quality seed and best genetic traits of grass carp, this study dealt with finding suitable conditions of sperm cryopreservation protocols and evaluated the effectiveness of cryopreserved sperm through breeding trials of C. idella. A broodstock population was developed from fingerlings imported from China by the Bangladesh Department of Fisheries. Sperm was collected from hormone-induced mature males, with an estimated concentration of 2.4 ± 0.3 × 1010 cells/mL and a pH of 8.3 ± 0.2. Sperm motility was evaluated in different concentrations of NaCl solution. The highest motility (96% ± 1%) and longest motility duration (22 ± 1 min) were achieved at 0.4% of NaCl (128 mOsmol/kg). The toxicity of DMSO and methanol at concentrations of 5%, 10%, and 15% was evaluated for 5-40 min using Alsever's solution and egg yolk citrate. The highest motility was achieved during 5 and 10 min of incubation with cryoprotectants at 5% and 10%. Alsever's solution with 10% DMSO at 1:9 dilution with sperm produced the highest equilibration motility (93% ± 2%) and when cooled at 10°C/min yielded the highest postthaw motility (85% ± 3%). Fertilization of 24% ± 3% to 51% ± 2% and hatching of 18% ± 2% to 41% ± 2% were achieved by using cryopreserved sperm in six selected private hatcheries. The fertilization rate for fresh sperm sourced from hatchery-reared males was 64% ± 5% to 85% ± 3%, and the hatching rate ranged from 53% ± 6% to 74% ± 5%. Thus, the cryopreservation protocol of C. idella sperm was found to be feasible for fry production at commercial hatcheries, but further research is needed to improve the fertilization and hatching rates.
Collapse
Affiliation(s)
- Shajjad Hossian
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Faijan Reza
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Matiur Rahman
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mariom
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammed Jahangir Alam
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Abdur Razzak
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Fazlul Awal Mollah
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Terrence R. Tiersch
- Aquatic Germplasm and Genetic Resources Center, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Md. Rafiqul Islam Sarder
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
3
|
Wen J, Chen SL, Xu WY, Zheng GD, Zou SM. Effects of high NaHCO 3 alkalinity on growth, tissue structure, digestive enzyme activity, and gut microflora of grass carp juvenile. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85223-85236. [PMID: 37386223 DOI: 10.1007/s11356-023-28083-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/31/2023] [Indexed: 07/01/2023]
Abstract
With the gradual decrease in freshwater resources, the available space for freshwater aquaculture is diminishing. As a result, saline-alkaline water aquaculture has emerged as a crucial method to fulfill the increasing demand. This study investigates the impact of alkaline water on the growth performance, tissues (gill, liver, and kidney), digestive enzyme activity, and intestinal microbiology in grass carp (Ctenopharyngodon idella). The aquarium conditions were set with sodium bicarbonate (18 mmol/L (LAW), 32 mmol/L (HAW)) to simulate the alkaline water environment. A freshwater group was the control (FW). The experimental fish were cultured for 60 days. The findings revealed that NaHCO3 alkaline stress significantly reduced growth performance, caused alterations in the structural morphology of gill lamellae, liver, and kidney tissues, and led to decreased activity of intestinal trypsin and lipase amylase (P < 0.05). Analysis of 16S rRNA sequences demonstrated that alkalinity influenced the abundance of dominant bacterial phyla and genera. Proteobacteria showed a significant decrease under alkaline conditions, while Firmicutes exhibited a significant increase (P < 0.05). Furthermore, alkalinity conditions significantly reduced the abundance of bacteria involved in protein, amino acid, and carbohydrate metabolism, cell transport, cell decomposition, and environmental information processing. Conversely, the abundance of bacteria associated with lipid metabolism, energy metabolism, organic systems, and disease functional flora increased significantly under alkalinity conditions (P < 0.05). In conclusion, this comprehensive study indicates that alkalinity stress adversely affected the growth performance of juvenile grass carp, likely due to tissue damage, reduced activity of intestinal digestive enzymes, and alterations in intestinal microorganisms.
Collapse
Affiliation(s)
- Jian Wen
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Song-Lin Chen
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wen-Ya Xu
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Guo-Dong Zheng
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shu-Ming Zou
- Genetics and Breeding Center for Blunt Snout Bream, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
4
|
Yang G, Liang X, Jiang Y, Li C, Zhang Y, Zhang X, Chang X, Shen Y, Meng X. Molecular Characterization of Grass Carp GIPR and Effect of Nutrition States, Insulin, and Glucagon on Its Expression. AQUACULTURE NUTRITION 2022; 2022:4330251. [PMID: 36860432 PMCID: PMC9973162 DOI: 10.1155/2022/4330251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 06/18/2023]
Abstract
GIP plays an important regulatory role in glucose and lipid metabolism. As the specific receptor, GIPR is involved in this physiological process. To assess the roles of GIPR in teleost, the GIPR gene was cloned from grass carp. The ORF of cloned GIPR gene was 1560 bp, encoding 519 amino acids. The grass carp GIPR was the G-protein-coupled receptor which contains seven predicted transmembrane domains. In addition, two predicted glycosylation sites were contained in the grass carp GIPR. The grass carp GIPR expression is in multiple tissues and is highly expressed in the kidney, brain regions, and visceral fat tissue. In the OGTT experiment, the GIPR expression is markedly decreased in the kidney, visceral fat, and brain by treatment with glucose for 1 and 3 h. In the fast and refeeding experiment, the GIPR expression in the kidney and visceral fat tissue was significantly induced in the fast groups. In addition, the GIPR expression levels were markedly decreased in the refeeding groups. In the present study, the visceral fat accumulation of grass carp was induced by overfed. The GIPR expression was significantly decreased in the brain, kidney, and visceral fat tissue of overfed grass carp. In primary hepatocytes, the GIPR expression was promoted by treatment with oleic acid and insulin. The GIPR mRNA levels were significantly reduced by treatment with glucose and glucagon in the grass carp primary hepatocytes. To our knowledge, this is the first time the biological role of GIPR is unveiled in teleost.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xiaomin Liang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yanle Jiang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Chengquan Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Yawei Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
5
|
Breves JP, Springer-Miller RH, Chenoweth DA, Paskavitz AL, Chang AYH, Regish AM, Einarsdottir IE, Björnsson BT, McCormick SD. Cortisol regulates insulin-like growth-factor binding protein (igfbp) gene expression in Atlantic salmon parr. Mol Cell Endocrinol 2020; 518:110989. [PMID: 32835784 DOI: 10.1016/j.mce.2020.110989] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 02/08/2023]
Abstract
The growth hormone (Gh)/insulin-like growth-factor (Igf)/Igf binding protein (Igfbp) system regulates growth and osmoregulation in salmonid fishes, but how this system interacts with other endocrine systems is largely unknown. Given the well-documented consequences of mounting a glucocorticoid stress response on growth, we hypothesized that cortisol inhibits anabolic processes by modulating the expression of hepatic igfbp mRNAs. Atlantic salmon (Salmo salar) parr were implanted intraperitoneally with cortisol implants (0, 10, and 40 μg g-1 body weight) and sampled after 3 or 14 days. Cortisol elicited a dose-dependent reduction in specific growth rate (SGR) after 14 days. While plasma Gh and Igf1 levels were unchanged, hepatic igf1 mRNA was diminished and hepatic igfbp1b1 and -1b2 were stimulated by the high cortisol dose. Plasma Igf1 was positively correlated with SGR at 14 days. Hepatic gh receptor (ghr), igfbp1a, -2a, -2b1, and -2b2 levels were not impacted by cortisol. Muscle igf2, but not igf1 or ghr, levels were stimulated at 3 days by the high cortisol dose. As both cortisol and the Gh/Igf axis promote seawater (SW) tolerance, and particular igfbps respond to SW exposure, we also assessed whether cortisol coordinates the expression of branchial igfbps and genes associated with ion transport. Cortisol stimulated branchial igfbp5b2 levels in parallel with Na+/K+-ATPase (NKA) activity and nka-α1b, Na+/K+/2Cl--cotransporter 1 (nkcc1), and cystic fibrosis transmembrane regulator 1 (cftr1) mRNA levels. The collective results indicate that cortisol modulates the growth of juvenile salmon via the regulation of hepatic igfbp1s whereas no clear links between cortisol and branchial igfbps previously shown to be salinity-responsive could be established.
Collapse
Affiliation(s)
- J P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - R H Springer-Miller
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - D A Chenoweth
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A L Paskavitz
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A Y H Chang
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA
| | - A M Regish
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| | - I E Einarsdottir
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463 SE, 40530, Göteborg, Sweden
| | - B Th Björnsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463 SE, 40530, Göteborg, Sweden
| | - S D McCormick
- U.S. Geological Survey, Leetown Science Center, Conte Anadromous Fish Research Laboratory, One Migratory Way, Turners Falls, MA, 01376, USA
| |
Collapse
|