1
|
Jia S, Li J, Lv J, Ren X, Wang J, Wang Q, Liu P, Li J. Molecular Characterization Related to Ovary Early Development Mechanisms after Eyestalk Ablation in Exopalaemon carinicauda. BIOLOGY 2023; 12:biology12040596. [PMID: 37106797 PMCID: PMC10135610 DOI: 10.3390/biology12040596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Eyestalk ablation is an effective method to promote ovarian development in crustaceans. Herein, we performed transcriptome sequencing of ovary and hepatopancreas tissues after eyestalk ablation in Exopalaemon carinicauda to identify genes related to ovarian development. Our analyses led to the identification of 97,383 unigenes and 190,757 transcripts, with an average N50 length of 1757 bp. In the ovary, four pathways related to oogenesis and three related to oocyte rapid growth were enriched. In the hepatopancreas, two vitellogenesis-associated transcripts were identified. Furthermore, short time-series expression miner (STEM) and gene ontology (GO) enrichment analyses revealed five terms related to gamete generation. In addition, two-color fluorescent in situ hybridization results suggested that dmrt1 might play a vital role in oogenesis during the early stage of ovarian development. Overall, our insights should support future studies focusing on investigating oogenesis and ovarian development in E. carinicauda.
Collapse
Affiliation(s)
- Shaoting Jia
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jitao Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianjian Lv
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xianyun Ren
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jiajia Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qiong Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Ping Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jian Li
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
2
|
Establishment of a Spermatogonial Stem Cell Line with Potential of Meiosis in a Hermaphroditic Fish, Epinephelus coioides. Cells 2022; 11:cells11182868. [PMID: 36139441 PMCID: PMC9496998 DOI: 10.3390/cells11182868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Spermatogonial stem cells (SSCs) are unique adult stem cells capable of self-renewal and differentiation into sperm. Grouper is a protogynous hermaphroditic fish farmed widely in the tropical and subtropical seas. In this study, we established an SSC line derived from adult testis of orange-spotted grouper, Epinephelus coioides. In the presence of basic fibroblast growth factor (bFGF) and leukemia inhibitory factor (LIF), the cells could be maintained with proliferation and self-renewal over 20 months and 120 passages under in vitro culture conditions. The cells exhibited strong alkaline phosphatase activity and the characteristics of SSCs with the expression of germ cell markers, including Vasa, Dazl, and Plzf, as well as the stem cell markers Nanog, Oct4, and Ssea1. Furthermore, the cultured cells could be induced by 11-ketotestosterone treatment to highly express the meiotic markers Rec8, Sycp3, and Dmc1, and produce some spherical cells, and even sperm-like cells with a tail. The findings of this study suggested that the cultured grouper SSC line would serve as an excellent tool to study the molecular mechanisms behind SSCs self-renewal and differentiation, meiosis during spermatogenesis, and sex reversal in hermaphroditic vertebrates. Moreover, this SSC line has great application value in grouper fish aquaculture, such as germ cell transplantation, genetic manipulation, and disease research.
Collapse
|
3
|
Duan X, Jia X, Liang K, Huang F, Shan J, Chen H, Ruan X, Li L, Zhao H, Wang Q. Liposome-Encapsulated Rec8 and Dmrt1 Plasmids Induce Red-Spotted Grouper (Epinephelus akaara) Testis Maturation. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:345-353. [PMID: 35303207 DOI: 10.1007/s10126-022-10111-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
In fish, the maturity of gonads plays an important role in the development and reproduction of the population, and it also dictates the success of captive breeding. Therefore, finding ways to promote gonadal maturation is an important goal in aquaculture. In this study, we injected recombinant dmrt1 and rec8 overexpression plasmids packaged in liposomes into the immature testis of red-spotted grouper (Epinephelus akaara) and measured the expression of Dmrt1 and Rec8 protein in vivo. Gonadosomatic index (GSI) and gonadal histology analyses showed that the testis developed from the immature to the mature state within 7 days after plasmid injection. Additionally, the spermatozoa concentration and motility in plasmid-injected fish was the same as that of naturally mature fish. These results provided evidence that delivery of dmrt1 and rec8 expression plasmids into the testis via injection induced testis maturation in vivo.
Collapse
Affiliation(s)
- Xuzhuo Duan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xianze Jia
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Kaishan Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Fengqi Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jinhong Shan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huitao Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinhe Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region On Marine Bioresource Conservation and Exploitation, Guangzhou, 510642, China.
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region On Marine Bioresource Conservation and Exploitation, Guangzhou, 510642, China.
| |
Collapse
|