1
|
Cytogenetics characterization of Crenuchus spilurus (Günther, 1863): a remarkable low diploid value within family Crenuchidae (Characiformes). Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Gouveia JG, Wolf IR, de Moraes-Manécolo VPO, Bardella VB, Ferracin LM, Giuliano-Caetano L, da Rosa R, Dias AL. Isolation and characterization of 5S rDNA sequences in catfishes genome (Heptapteridae and Pseudopimelodidae): perspectives for rDNA studies in fish by C 0t method. Cytotechnology 2016; 68:2711-2720. [PMID: 27344147 PMCID: PMC5101342 DOI: 10.1007/s10616-016-9996-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 06/10/2016] [Indexed: 10/21/2022] Open
Abstract
Sequences of 5S ribosomal RNA (rRNA) are extensively used in fish cytogenomic studies, once they have a flexible organization at the chromosomal level, showing inter- and intra-specific variation in number and position in karyotypes. Sequences from the genome of Imparfinis schubarti (Heptapteridae) were isolated, aiming to understand the organization of 5S rDNA families in the fish genome. The isolation of 5S rDNA from the genome of I. schubarti was carried out by reassociation kinetics (C0t) and PCR amplification. The obtained sequences were cloned for the construction of a micro-library. The obtained clones were sequenced and hybridized in I. schubarti and Microglanis cottoides (Pseudopimelodidae) for chromosome mapping. An analysis of the sequence alignments with other fish groups was accomplished. Both methods were effective when using 5S rDNA for hybridization in I. schubarti genome. However, the C0t method enabled the use of a complete 5S rRNA gene, which was also successful in the hybridization of M. cottoides. Nevertheless, this gene was obtained only partially by PCR. The hybridization results and sequence analyses showed that intact 5S regions are more appropriate for the probe operation, due to conserved structure and motifs. This study contributes to a better understanding of the organization of multigene families in catfish's genomes.
Collapse
Affiliation(s)
- Juceli Gonzalez Gouveia
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Ivan Rodrigo Wolf
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | | | - Vanessa Belline Bardella
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Lara Munique Ferracin
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Lucia Giuliano-Caetano
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Renata da Rosa
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil
| | - Ana Lúcia Dias
- Departamento de Biologia Geral, Centro de Ciências Biológicas, CCB, Universidade Estadual de Londrina, P.O Box 6001, Londrina, Paraná, CEP 86051-970, Brazil.
| |
Collapse
|
3
|
Pazian MF, Pereira LHG, Shimabukuru-Dias CK, Oliveira C, Foresti F. Cytogenetic and molecular markers reveal the complexity of the genus Piabina Reinhardt, 1867 (Characiformes: Characidae). NEOTROPICAL ICHTHYOLOGY 2012. [DOI: 10.1590/s1679-62252012005000015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytogenetic and molecular analyses were carried out in fish representative of the genus Piabina. This study specifically involved the species P. argentea and P. anhembi collected from areas of the Paranapanema and Tietê River basins, Brazil. Our findings suggest that fish classified as Piabina argentea in the Paranapanema and Tietê Rivers may represent more than one species. The samples analyzed differed by cytogenetic particularities and molecular analyses using partial sequences of the genes COI and CytB as genetic markers revealed three distinct groups of P. argentea with genetic distances sufficient to support the conclusion that the three samples analyzed are three distinct taxonomic units.
Collapse
Affiliation(s)
| | | | | | | | - Fausto Foresti
- Universidade Estadual Paulista Júlio de Mesquita Filho, Brazil
| |
Collapse
|
4
|
Merlo MA, Pacchiarini T, Portela-Bens S, Cross I, Manchado M, Rebordinos L. Genetic characterization of Plectorhinchus mediterraneus yields important clues about genome organization and evolution of multigene families. BMC Genet 2012; 13:33. [PMID: 22545758 PMCID: PMC3464664 DOI: 10.1186/1471-2156-13-33] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/30/2012] [Indexed: 12/17/2022] Open
Abstract
Background Molecular and cytogenetic markers are of great use for to fish characterization, identification, phylogenetics and evolution. Multigene families have proven to be good markers for a better understanding of the variability, organization and evolution of fish species. Three different tandemly-repeated gene families (45S rDNA, 5S rDNA and U2 snDNA) have been studied in Plectorhinchus mediterraneus (Teleostei: Haemulidae), at both molecular and cytogenetic level, to elucidate the taxonomy and evolution of these multigene families, as well as for comparative purposes with other species of the family. Results Four different types of 5S rDNA were obtained; two of them showed a high homology with that of Raja asterias, and the putative implication of a horizontal transfer event and its consequences for the organization and evolution of the 5S rDNA have been discussed. The other two types do not resemble any other species, but in one of them a putative tRNA-derived SINE was observed for the first time, which could have implications in the evolution of the 5S rDNA. The ITS-1 sequence was more related to a species of another different genus than to that of the same genus, therefore a revision of the Hamulidae family systematic has been proposed. In the analysis of the U2 snDNA, we were able to corroborate that U2 snDNA and U5 snDNA were linked in the same tandem array, and this has interest for tracing evolutionary lines. The karyotype of the species was composed of 2n = 48 acrocentric chromosomes, and each of the three multigene families were located in different chromosome pairs, thus providing three different chromosomal markers. Conclusions Novel data can be extracted from the results: a putative event of horizontal transfer, a possible tRNA-derived SINE linked to one of the four 5S rDNA types characterized, and a linkage between U2 and U5 snDNA. In addition, a revision of the taxonomy of the Haemulidae family has been suggested, and three cytogenetic markers have been obtained. Some of these results have not been described before in any other fish species. New clues about the genome organization and evolution of the multigene families are offered in this study.
Collapse
Affiliation(s)
- Manuel A Merlo
- Laboratorio de Genética, Universidad de Cádiz, Polígono Río San Pedro 11510, Puerto Real, Cádiz, Spain
| | | | | | | | | | | |
Collapse
|
5
|
Rodrigues DS, Rivera M, Lourenço LB. Molecular organization and chromosomal localization of 5S rDNA in Amazonian Engystomops (Anura, Leiuperidae). BMC Genet 2012; 13:17. [PMID: 22433220 PMCID: PMC3342222 DOI: 10.1186/1471-2156-13-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/20/2012] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND For anurans, knowledge of 5S rDNA is scarce. For Engystomops species, chromosomal homeologies are difficult to recognize due to the high level of inter- and intraspecific cytogenetic variation. In an attempt to better compare the karyotypes of the Amazonian species Engystomops freibergi and Engystomops petersi, and to extend the knowledge of 5S rDNA organization in anurans, the 5S rDNA sequences of Amazonian Engystomops species were isolated, characterized, and mapped. RESULTS Two types of 5S rDNA, which were readily differentiated by their NTS (non-transcribed spacer) sizes and compositions, were isolated from specimens of E. freibergi from Brazil and E. petersi from two Ecuadorian localities (Puyo and Yasuní). In the E. freibergi karyotypes, the entire type I 5S rDNA repeating unit hybridized to the pericentromeric region of 3p, whereas the entire type II 5S rDNA repeating unit mapped to the distal region of 6q, suggesting a differential localization of these sequences. The type I NTS probe clearly detected the 3p pericentromeric region in the karyotypes of E. freibergi and E. petersi from Puyo and the 5p pericentromeric region in the karyotype of E. petersi from Yasuní, but no distal or interstitial signals were observed. Interestingly, this probe also detected many centromeric regions in the three karyotypes, suggesting the presence of a satellite DNA family derived from 5S rDNA. The type II NTS probe detected only distal 6q regions in the three karyotypes, corroborating the differential distribution of the two types of 5S rDNA. CONCLUSIONS Because the 5S rDNA types found in Engystomops are related to those of Physalaemus with respect to their nucleotide sequences and chromosomal locations, their origin likely preceded the evolutionary divergence of these genera. In addition, our data indicated homeology between Chromosome 5 in E. petersi from Yasuní and Chromosomes 3 in E. freibergi and E. petersi from Puyo. In addition, the chromosomal location of the type II 5S rDNA corroborates the hypothesis that the Chromosomes 6 of E. petersi and E. freibergi are homeologous despite the great differences observed between the karyotypes of the Yasuní specimens and the others.
Collapse
Affiliation(s)
- Débora Silva Rodrigues
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-863, Brazil
| | - Miryan Rivera
- Escuela de Ciencias Biológicas, Pontifícia Universidad Católica Del Ecuador, Quito, Ecuador
| | - Luciana Bolsoni Lourenço
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-863, Brazil
| |
Collapse
|
6
|
Scacchetti P, Alves J, Utsunomia R, Claro F, de Almeida Toledo L, Oliveira C, Foresti F. Molecular Characterization and Physical Mapping of Two Classes of 5S rDNA in the Genomes of Gymnotus sylvius and G. inaequilabiatus (Gymnotiformes, Gymnotidae). Cytogenet Genome Res 2012; 136:131-7. [DOI: 10.1159/000335658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2011] [Indexed: 11/19/2022] Open
|
7
|
Fernández-Tajes J, Méndez J. Two different size classes of 5S rDNA units coexisting in the same tandem array in the razor clam Ensis macha: is this region suitable for phylogeographic studies? Biochem Genet 2011; 47:775-88. [PMID: 19633947 DOI: 10.1007/s10528-009-9276-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 01/05/2009] [Indexed: 11/29/2022]
Abstract
For a study of 5S ribosomal genes (rDNA) in the razor clam Ensis macha, the 5S rDNA region was amplified and sequenced. Two variants, so-called type I or short repeat (approximately 430 bp) and type II or long repeat (approximately 735 bp), appeared to be the main components of the 5S rDNA of this species. Their spacers differed markedly, both in length and nucleotide composition. The organization of the two variants was investigated by amplifying the genomic DNA with primers based on the sequence of the type I and type II spacers. PCR amplification products with primers EMLbF and EMSbR showed that the long and short repeats are associated within the same tandem array, suggesting an intermixed arrangement of both spacers. Nevertheless, amplifications carried out with inverse primers EMSinvF/R and EMLinvF/R revealed that some short and long repeats are contiguous in the same tandem array. This is the first report of the coexistence of two variable spacers in the same tandem array in bivalve mollusks.
Collapse
Affiliation(s)
- Juan Fernández-Tajes
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, Spain.
| | | |
Collapse
|
8
|
Merlo MA, Cross I, Chairi H, Manchado M, Rebordinos L. Analysis of three multigene families as useful tools in species characterization of two closely-related species, Dicentrarchus labrax, Dicentrarchus punctatus and their hybrids. Genes Genet Syst 2011; 85:341-9. [PMID: 21317546 DOI: 10.1266/ggs.85.341] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
By analyzing three multigene families, two closely related and commercially important species, Dicentrarchus labrax and Dicentrarchus punctatus, were characterized by cytogenetic and molecular methods. The interspecies hybrid Dicentrarchus labrax (♀) × Dicentrarchus punctatus (♂) was also analyzed. The multigene families studied were the 5S rDNA, 45S rDNA and the U2 snRNA. A microsatellite GTT motif was found within the non transcribed spacers (NTS) of the 5S rDNA from the two species. However, hexanucleotide duplication next to this microsatellite was observed in the D. labrax and hybrid clones, but not in D. punctatus. The U2 snRNA appeared to be linked to the U5 gene and showed two variant sequences, in both D. labrax and D. punctatus. They differed in one insertion/deletion of 7 nucleotides. The first internal transcribed spacer (ITS-1) region showed higher nucleotide variability in D. punctatus than in D. labrax. Nucleotide polymorphism within species and also nucleotide divergence between species were determined in the different gene regions. In a FISH analysis we obtained three chromosomal markers, because the 5S rDNA, 18S rDNA and U2 snRNA probes hybridized each in three different chromosome pairs. Hence none of them was co-localized. The 5S rDNA cluster and U2 snRNA were localized in acrocentric chromosome pairs, while the 18S rRNA gene probe hybridized in a subtelocentric pair. Finally, the usefulness of the results in developing tools for phylogenetic analysis and species identification are discussed in relation to other fish species.
Collapse
Affiliation(s)
- Manuel Alejandro Merlo
- Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Cádiz, Spain
| | | | | | | | | |
Collapse
|
9
|
Vittorazzi SE, Lourenço LB, Del-Grande ML, Recco-Pimentel SM. Satellite DNA derived from 5S rDNA in Physalaemus cuvieri (Anura, Leiuperidae). Cytogenet Genome Res 2011; 134:101-7. [PMID: 21464559 DOI: 10.1159/000325540] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2010] [Indexed: 01/04/2023] Open
Abstract
In the present study, we describe for the first time a family of 190-bp satellite DNA related to 5S rDNA in anurans and the existence of 2 forms of 5S rDNA, type I (201 bp) and type II (690 bp). The sequences were obtained from genomic DNA of Physalaemus cuvieri from Palmeiras, State of Bahia, Brazil. Analysis of the nucleotide sequence revealed that the satellite DNA obtained by digestion with EcoRI, called PcP190EcoRI, is 70% similar to the coding region of type I 5S rDNA and 66% similar to the coding region of type II 5S rDNA. Membrane hybridization and PCR amplification of the sequence showed that PcP190EcoRI is tandemly repeated. The satellite DNA as well as type I and type II 5S rDNA were localized in P. cuvieri chromosomes by fluorescent in situ hybridization. The PcP190EcoRI sequence was found in the centromeres of chromosomes 1-5 and in the pericentromeric region of chromosome 3. Type I 5S rDNA was detected in chromosome 3, coincident with the site of PcP190EcoRI. Type II 5S rDNA was located interstitially in the long arm of chromosome 5. None of these sequences co-localized with nucleolar organizer regions. Our data suggests that this satellite DNA originates from the 5S ribosomal multigene family, probably by gene duplication, nucleotide divergence and sequence dispersion in the genome.
Collapse
Affiliation(s)
- S E Vittorazzi
- Departamento de Anatomia, Biologia Celular, Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brasil
| | | | | | | |
Collapse
|
10
|
Ubeda-Manzanaro M, Merlo MA, Palazón JL, Sarasquete C, Rebordinos L. Sequence characterization and phylogenetic analysis of the 5S ribosomal DNA in species of the family Batrachoididae. Genome 2011; 53:723-30. [PMID: 20924421 DOI: 10.1139/g10-048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5S ribosomal DNA (rDNA) sequences were analyzed in four species belonging to different genera of the fish family Batrachoididae. Several 5S rDNA variants differing in their non-transcribed spacers (NTSs) were found and were grouped into two main types. Two species showed both types of 5S rDNA, whereas the other two species showed only one type. One type of NTS of Amphichthys cryptocentrus showed a high polymorphism due to several deletions and insertions, and phylogenetic analysis showed a between-species clustering of this type of NTS in Amphichthys cryptocentrus. These results suggest a clear differentiation in the model of 5S rDNA evolution of these four species of Batrachoididae, which appear to have been subject to processes of concerted evolution and birth-and-death evolution with purifying selection.
Collapse
Affiliation(s)
- María Ubeda-Manzanaro
- Instituto de Ciencias Marinas de Andalucía - CSIC, Polígono Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| | | | | | | | | |
Collapse
|
11
|
Chromosomal localization of rDNA genes and genomic organization of 5S rDNA in Oreochromis mossambicus, O. urolepis hornorum and their hybrid. J Genet 2010; 89:163-71. [PMID: 20861567 DOI: 10.1007/s12041-010-0022-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, classical and molecular cytogenetic analyses were performed in tilapia fishes, Oreochromis mossambicus (XX/XY sex determination system), O. urolepis hornorum (WZ/ZZ sex determination system) and their hybrid by crossing O. mossambicus female x O. u. hornorum male. An identical karyotype ((2n = 44, NF (total number of chromosomal arms) = 50) was obtained from three examined tilapia samples. Genomic organization analysis of 5S rDNA revealed two different types of 5S rDNA sequences, 5S type I and 5S type II. Moreover, fluorescence in situ hybridization (FISH) with 5S rDNA probes showed six positive fluorescence signals on six chromosomes of all the analysed metaphases from the three tilapia samples. Subsequently, 45S rDNA probes were also prepared, and six positive fluorescence signals were observed on three chromosome pairs in all analysed metaphases of the three tilapia samples. The correlation between 45 rDNA localization and nucleolar organizer regions (NORs) was confirmed by silver nitrate staining in tilapia fishes. Further, different chromosomal localizations of 5S rDNA and 45S rDNA were verified by two different colour FISH probes. Briefly, the current data provide an insights for hybridization projects and breeding improvement of tilapias.
Collapse
|
12
|
Freire R, Arias A, Insua AM, Méndez J, Eirín-López JM. Evolutionary dynamics of the 5S rDNA gene family in the mussel Mytilus: mixed effects of birth-and-death and concerted evolution. J Mol Evol 2010; 70:413-26. [PMID: 20386892 DOI: 10.1007/s00239-010-9341-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/30/2010] [Indexed: 11/24/2022]
Abstract
In higher eukaryotes, the gene family encoding the 5S ribosomal RNA (5S rRNA) has been used (together with histones) to showcase the archetypal example of a gene family subject to concerted evolution. However, recent studies have revealed conspicuous features challenging the predictions of this model, including heterogeneity of repeat units, the presence of functional 5S gene variants as well as the existence of 5S rDNA divergent pseudogenes lacking traces of homogenization. In the present work, we have broadened the scope in the evolutionary study of ribosomal gene families by studying the 5S rRNA family in mussels, a model organism which stands out among other animals due to the heterogeneity it displays regarding sequence and organization. To this end, 48 previously unknown 5S rDNA units (coding and spacer regions) were sequenced in five mussel species, leading to the characterization of two new types of units (referred to here as small-beta 5S rDNA and gamma-5S rDNA) coexisting in the genome with alpha and beta rDNA units. The intense genetic dynamics of this family is further supported by the first description of an association between gamma-5S rDNA units and tRNA genes. Molecular evolutionary and phylogenetic analyses revealed an extensive lack of homology among spacer sequences belonging to different rDNA types, suggesting the presence of independent evolutionary pathways leading to their differentiation. Overall, our results suggest that the long-term evolution of the 5S rRNA gene family in mussels is most likely mediated by a mixed mechanism involving the generation of genetic diversity through birth-and-death, followed by a process of local homogenization resulting from concerted evolution in order to maintain the genetic identities of the different 5S units, probably after their transposition to independent chromosomal locations.
Collapse
Affiliation(s)
- Ruth Freire
- XENOMAR Group, Departamento de Biología Celular y Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Zapateira s/n, A Coruña, Spain
| | | | | | | | | |
Collapse
|
13
|
Poletto AB, Ferreira IA, Martins C. The B chromosomes of the African cichlid fish Haplochromis obliquidens harbour 18S rRNA gene copies. BMC Genet 2010; 11:1. [PMID: 20051104 PMCID: PMC2806386 DOI: 10.1186/1471-2156-11-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Accepted: 01/05/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diverse plant and animal species have B chromosomes, also known as accessory, extra or supernumerary chromosomes. Despite being widely distributed among different taxa, the genomic nature and genetic behavior of B chromosomes are still poorly understood. RESULTS In this study we describe the occurrence of B chromosomes in the African cichlid fish Haplochromis obliquidens. One or two large B chromosome(s) occurring in 39.6% of the analyzed individuals (both male and female) were identified. To better characterize the karyotype and assess the nature of the B chromosomes, fluorescence in situ hybridization (FISH) was performed using probes for telomeric DNA repeats, 18S and 5S rRNA genes, SATA centromeric satellites, and bacterial artificial chromosomes (BACs) enriched in repeated DNA sequences. The B chromosomes are enriched in repeated DNAs, especially non-active 18S rRNA gene-like sequences. CONCLUSION Our results suggest that the B chromosome could have originated from rDNA bearing subtelo/acrocentric A chromosomes through formation of an isochromosome, or by accumulation of repeated DNAs and rRNA gene-like sequences in a small proto-B chromosome derived from the A complement.
Collapse
Affiliation(s)
- Andréia B Poletto
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Irani A Ferreira
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Botucatu, SP, Brazil
| | - Cesar Martins
- UNESP - Universidade Estadual Paulista, Instituto de Biociências, Departamento de Morfologia, Botucatu, SP, Brazil
| |
Collapse
|
14
|
Structural and autooxidation profiles of myoglobins from three species and one hybrid of tilapia (Cichlidae, Perciformes). Comp Biochem Physiol B Biochem Mol Biol 2009; 154:274-81. [PMID: 19602446 DOI: 10.1016/j.cbpb.2009.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/30/2009] [Accepted: 06/30/2009] [Indexed: 11/20/2022]
Abstract
cDNAs encoding myoglobin were cloned from the slow skeletal muscles of three representative species of tilapia, namely, Nile tilapia Oreochromis niloticus, blue tilapia O. aureus, Mozambique tilapia O. mossambicus and one hybrid O. niloticus female symbol x O. aureus male symbol, and the primary structures were deduced. All cDNAs contained an open reading frame of 444 base pairs, encoding 147 amino acids. The amino acid sequences of Mb were completely conserved among these species, though species variations in the nucleotide sequences were recognized both in coding and non-coding regions. The amino acid sequence identity was around 70-80% compared to other teleostean Mbs. In comparison of each alpha-helical segment (A through H) and the intersegment regions to the counterparts of tuna myoglobin, the alpha-helical segments C and F as well as the intersegment regions F-G and G-H were identical. The identities of alpha-helical segments B and H and the intersegment region F-G were relatively low. Differences were also recognized in the hydropathy plot and the tertiary structures obtained by homology modeling. The autooxidation rates at 25 degrees C of myoglobin fraction from the slow skeletal muscle were essentially the same among the above tilapia species, as expected from the conserved amino acid sequences.
Collapse
|
15
|
Molecular organization of 5S rDNA in sharks of the genus Rhizoprionodon: insights into the evolutionary dynamics of 5S rDNA in vertebrate genomes. Genet Res (Camb) 2009; 91:61-72. [PMID: 19220932 DOI: 10.1017/s0016672308009993] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we attempted a molecular characterization of the 5S rDNA in two closely related species of carcharhiniform sharks, Rhizoprionodon lalandii and Rhizoprionodon porosus, as well as a further comparative analysis of available data on lampreys, several fish groups and other vertebrates. Our data show that Rhizoprionodon sharks carry two 5S rDNA classes in their genomes: a short repeat class (termed class I) composed of approximately 185 bp repeats, and a large repeat class (termed class II) arrayed in approximately 465 bp units. These classes were differentiated by several base substitutions in the 5S coding region and by completely distinct non-transcribed spacers (NTS). In class II, both species showed a similar composition for both the gene coding region and the NTS region. In contrast, class I varied extensively both within and between the two shark species. A comparative analysis of 5S rRNA gene sequences of elasmobranchs and other vertebrates showed that class I is closely related to the bony fishes, whereas the class II gene formed a separate cartilaginous clade. The presence of two variant classes of 5S rDNA in sharks likely maintains the tendency for dual ribosomal classes observed in other fish species. The present data regarding the 5S rDNA organization provide insights into the dynamics and evolution of this multigene family in the fish genome, and they may also be useful in clarifying aspects of vertebrate genome evolution.
Collapse
|
16
|
Fujiwara M, Inafuku J, Takeda A, Watanabe A, Fujiwara A, Kohno SI, Kubota S. Molecular organization of 5S rDNA in bitterlings (Cyprinidae). Genetica 2008; 135:355-65. [PMID: 18648989 DOI: 10.1007/s10709-008-9294-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 05/30/2008] [Indexed: 10/21/2022]
Abstract
Molecular organization and nucleotide sequences of the 5S rRNA gene and NTS were investigated in freshwater fish, bitterlings (Acheilognathinae), including 10 species/subspecies of four genera, Acheilognathus, Pseudoperilampus, Rhodeus, and Tanakia, to understand the evolutionary trait of 5S rDNA arrays. Southern hybridization analysis revealed a general trend with tandem repeats of 5S rDNA in all the examined bitterlings. Sequence analysis demonstrated a conserved 120 bp sequence of the 5S rRNA gene and a short NTS of 56-67 bp with two distinct portions, a conserved (5'-flanking portion; at positions -1 to -38) and a variable part (3'-flanking portion), in 6 of 10 species/subspecies examined. The conserved NTS region was most likely an external promoter so far observed in various vertebrates, whereas the variable NTS region could be divided into two types due to its nucleotide polymorphisms. Molecular phylogeny using the 5S rRNA gene and NTS sequences suggested the occurrence of 5S rDNA duplication before speciation and a concerted evolution for the gene and conserved NTS regions, but a birth-and-death process to maintain the variable NTS region. Thus, the 5S rDNA in the examined bitterlings might have evolved under a mixed process of evolution.
Collapse
Affiliation(s)
- Mika Fujiwara
- Department of Biology, Faculty of Science, Toho University, Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Gornung E, Colangelo P, Annesi F. 5S ribosomal RNA genes in six species of Mediterranean grey mullets: genomic organization and phylogenetic inference. Genome 2008; 50:787-95. [PMID: 17893718 DOI: 10.1139/g07-058] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper describes a study of the 5S ribosomal RNA genes (5S rDNA) in a group of 6 species belonging to 4 genera of Mugilidae. In these 6 species, the relatively short 5S rDNA repeat units, generated by PCR and ranging in size from 219 to 257 bp, show a high level of intragenomic homogeneity of both coding and spacer regions (NTS-I). Phylogenetic reconstructions based on this data set highlight the greater phylogenetic and genetic diversity of Mugil cephalus and Oedalechilus labeo compared with the genera Liza and Chelon. Comparative sequence analysis revealed significant conservation of the short 5S rDNA repeat units across Chelon and Liza. Moreover, a second size class of 5S rDNA repeat units, ranging from roughly 800 to 1100 bp, was produced in the Liza and Chelon samples. Only short 5S rDNA repeat units were found in M. cephalus and O. labeo. The sequences of the long 5S rDNA repeat units, obtained in Chelon labrosus and Liza ramada, differ owing to the presence of 2 large insertion/deletions (indels) in the spacers (NTS-II) and show considerable sequence identity with NTS-I spacers. Interspecific sequence variation of NTS-II spacers, excluding the indels, is low. Southern-blot hybridization patterns suggest an intermixed arrangement of short and long repeat units within a single chromosome locus.
Collapse
Affiliation(s)
- Ekaterina Gornung
- Department of Animal and Human Biology, University of Rome Sapienza, via A. Borelli 50, 00161 Rome, Italy.
| | | | | |
Collapse
|