1
|
Hughes JJ, Lagunas-Robles G, Campbell P. The role of conflict in the formation and maintenance of variant sex chromosome systems in mammals. J Hered 2024; 115:601-624. [PMID: 38833450 DOI: 10.1093/jhered/esae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 06/01/2024] [Indexed: 06/06/2024] Open
Abstract
The XX/XY sex chromosome system is deeply conserved in therian mammals, as is the role of Sry in testis determination, giving the impression of stasis relative to other taxa. However, the long tradition of cytogenetic studies in mammals documents sex chromosome karyotypes that break this norm in myriad ways, ranging from fusions between sex chromosomes and autosomes to Y chromosome loss. Evolutionary conflict, in the form of sexual antagonism or meiotic drive, is the primary predicted driver of sex chromosome transformation and turnover. Yet conflict-based hypotheses are less considered in mammals, perhaps because of the perceived stability of the sex chromosome system. To address this gap, we catalog and characterize all described sex chromosome variants in mammals, test for family-specific rates of accumulation, and consider the role of conflict between the sexes or within the genome in the evolution of these systems. We identify 152 species with sex chromosomes that differ from the ancestral state and find evidence for different rates of ancestral to derived transitions among families. Sex chromosome-autosome fusions account for 79% of all variants whereas documented sex chromosome fissions are limited to three species. We propose that meiotic drive and drive suppression provide viable explanations for the evolution of many of these variant systems, particularly those involving autosomal fusions. We highlight taxa particularly worthy of further study and provide experimental predictions for testing the role of conflict and its alternatives in generating observed sex chromosome diversity.
Collapse
Affiliation(s)
- Jonathan J Hughes
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - German Lagunas-Robles
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| | - Polly Campbell
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
2
|
Dedukh D, Krasikova A. Delete and survive: strategies of programmed genetic material elimination in eukaryotes. Biol Rev Camb Philos Soc 2022; 97:195-216. [PMID: 34542224 PMCID: PMC9292451 DOI: 10.1111/brv.12796] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023]
Abstract
Genome stability is a crucial feature of eukaryotic organisms because its alteration drastically affects the normal development and survival of cells and the organism as a whole. Nevertheless, some organisms can selectively eliminate part of their genomes from certain cell types during specific stages of ontogenesis. This review aims to describe the phenomenon of programmed DNA elimination, which includes chromatin diminution (together with programmed genome rearrangement or DNA rearrangements), B and sex chromosome elimination, paternal genome elimination, parasitically induced genome elimination, and genome elimination in animal and plant hybrids. During programmed DNA elimination, individual chromosomal fragments, whole chromosomes, and even entire parental genomes can be selectively removed. Programmed DNA elimination occurs independently in different organisms, ranging from ciliate protozoa to mammals. Depending on the sequences destined for exclusion, programmed DNA elimination may serve as a radical mechanism of dosage compensation and inactivation of unnecessary or dangerous genetic entities. In hybrids, genome elimination results from competition between parental genomes. Despite the different consequences of DNA elimination, all genetic material destined for elimination must be first recognised, epigenetically marked, separated, and then removed and degraded.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| | - Alla Krasikova
- Saint‐Petersburg State University7/9 Universitetskaya EmbankmentSaint‐Petersburg199034Russia
| |
Collapse
|
3
|
Saunders PA, Veyrunes F. Unusual Mammalian Sex Determination Systems: A Cabinet of Curiosities. Genes (Basel) 2021; 12:1770. [PMID: 34828376 PMCID: PMC8617835 DOI: 10.3390/genes12111770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 11/21/2022] Open
Abstract
Therian mammals have among the oldest and most conserved sex-determining systems known to date. Any deviation from the standard XX/XY mammalian sex chromosome constitution usually leads to sterility or poor fertility, due to the high differentiation and specialization of the X and Y chromosomes. Nevertheless, a handful of rodents harbor so-called unusual sex-determining systems. While in some species, fertile XY females are found, some others have completely lost their Y chromosome. These atypical species have fascinated researchers for over 60 years, and constitute unique natural models for the study of fundamental processes involved in sex determination in mammals and vertebrates. In this article, we review current knowledge of these species, discuss their similarities and differences, and attempt to expose how the study of their exceptional sex-determining systems can further our understanding of general processes involved in sex chromosome and sex determination evolution.
Collapse
Affiliation(s)
- Paul A. Saunders
- Institut des Sciences de l’Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), 34090 Montpellier, France;
- School of Natural Sciences, University of Tasmania, Sandy Bay, TAS 7000, Australia
| | - Frédéric Veyrunes
- Institut des Sciences de l’Evolution de Montpellier, ISEM UMR 5554 (CNRS/Université Montpellier/IRD/EPHE), 34090 Montpellier, France;
| |
Collapse
|
4
|
Abstract
Over the last few decades, an increasing number of vertebrate taxa have been identified that undergo programmed genome rearrangement, or programmed DNA loss, during development. In these organisms, the genome of germ cells is often reproducibly different from the genome of all other cells within the body. Although we clearly have not identified all vertebrate taxa that undergo programmed genome loss, the list of species known to undergo loss now represents ∼10% of vertebrate species, including several basally diverging lineages. Recent studies have shed new light on the targets and mechanisms of DNA loss and their association with canonical modes of DNA silencing. Ultimately, expansion of these studies into a larger collection of taxa will aid in reconstructing patterns of shared/independent ancestry of programmed DNA loss in the vertebrate lineage, as well as more recent evolutionary events that have shaped the structure and content of eliminated DNA.
Collapse
Affiliation(s)
- Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA; , ,
| | | | - Cody Saraceno
- Department of Biology, University of Kentucky, Lexington, Kentucky 40506, USA; , ,
| |
Collapse
|
5
|
Vujošević M, Rajičić M, Blagojević J. B Chromosomes in Populations of Mammals Revisited. Genes (Basel) 2018; 9:E487. [PMID: 30304868 PMCID: PMC6210394 DOI: 10.3390/genes9100487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 01/23/2023] Open
Abstract
The study of B chromosomes (Bs) started more than a century ago, while their presence in mammals dates since 1965. As the past two decades have seen huge progress in application of molecular techniques, we decided to throw a glance on new data on Bs in mammals and to review them. We listed 85 mammals with Bs that make 1.94% of karyotypically studied species. Contrary to general view, a typical B chromosome in mammals appears both as sub- or metacentric that is the same size as small chromosomes of standard complement. Both karyotypically stable and unstable species possess Bs. The presence of Bs in certain species influences the cell division, the degree of recombination, the development, a number of quantitative characteristics, the host-parasite interactions and their behaviour. There is at least some data on molecular structure of Bs recorded in nearly a quarter of species. Nevertheless, a more detailed molecular composition of Bs presently known for six mammalian species, confirms the presence of protein coding genes, and the transcriptional activity for some of them. Therefore, the idea that Bs are inert is outdated, but the role of Bs is yet to be determined. The maintenance of Bs is obviously not the same for all species, so the current models must be adapted while bearing in mind that Bs are not inactive as it was once thought.
Collapse
Affiliation(s)
- Mladen Vujošević
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| | - Marija Rajičić
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| | - Jelena Blagojević
- Institute for Biological Research "Siniša Stanković", Department of Genetic Research, University of Belgrade, Bulevar despota Stefana 142, Belgrade 11060, Serbia.
| |
Collapse
|
6
|
Gomes Júnior RG, Schneider CH, de Lira T, Carvalho NDM, Feldberg E, da Silva MNF, Gross MC. Intense genomic reorganization in the genus Oecomys (Rodentia, Sigmodontinae): comparison between DNA barcoding and mapping of repetitive elements in three species of the Brazilian Amazon. COMPARATIVE CYTOGENETICS 2016; 10:401-426. [PMID: 27830049 PMCID: PMC5088352 DOI: 10.3897/compcytogen.v10i3.8306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/29/2016] [Indexed: 05/31/2023]
Abstract
Oecomys Thomas, 1906 is one of the most diverse and widely distributed genera within the tribe Oryzomyini. At least sixteen species in this genus have been described to date, but it is believed this genus contains undescribed species. Morphological, molecular and cytogenetic study has revealed an uncertain taxonomic status for several Oecomys species, suggesting the presence of a complex of species. The present work had the goal of contributing to the genetic characterization of the genus Oecomys in the Brazilian Amazon. Thirty specimens were collected from four locations in the Brazilian Amazon and three nominal species recognized: Oecomys auyantepui (Tate, 1939), Oecomys bicolor (Tomes, 1860) and Oecomys rutilus (Anthony, 1921). COI sequence analysis grouped Oecomys auyantepui, Oecomys bicolor and Oecomys rutilus specimens into one, three and two clades, respectively, which is consistent with their geographic distribution. Cytogenetic data for Oecomys auyantepui revealed the sympatric occurrence of two different diploid numbers, 2n=64/NFa=110 and 2n=66/NFa=114, suggesting polymorphism while Oecomys bicolor exhibited 2n=80/NFa=142 and Oecomys rutilus 2n=54/NFa=90. The distribution of constitutive heterochromatin followed a species-specific pattern. Interspecific variation was evident in the chromosomal location and number of 18S rDNA loci. However, not all loci showed signs of activity. All three species displayed a similar pattern for 5S rDNA, with only one pair carrying this locus. Interstitial telomeric sites were found only in Oecomys auyantepui. The data presented in this work reinforce intra- and interspecific variations observed in the diploid number of Oecomys species and indicate that chromosomal rearrangements have led to the appearance of different diploid numbers and karyotypic formulas.
Collapse
Affiliation(s)
- Renan Gabriel Gomes Júnior
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Departamento de Genética, Laboratório de Citogenômica Animal, Av. General Rodrigo Otávio, 3000, Japiim, Zip code 69077-000 Manaus, AM, Brazil
| | - Carlos Henrique Schneider
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Departamento de Genética, Laboratório de Citogenômica Animal, Av. General Rodrigo Otávio, 3000, Japiim, Zip code 69077-000 Manaus, AM, Brazil
| | - Thatianna de Lira
- Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936 Zip Code 69077-000, Manaus, AM, Brazil
| | - Natália Dayane Moura Carvalho
- Universidade Federal do Amazonas, Instituto de Ciências Biológicas, Departamento de Genética, Laboratório de Citogenômica Animal, Av. General Rodrigo Otávio, 3000, Japiim, Zip code 69077-000 Manaus, AM, Brazil
| | - Eliana Feldberg
- Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936 Zip Code 69077-000, Manaus, AM, Brazil
| | | | - Maria Claudia Gross
- Universidade Federal da Integração Latino Americana, Laboratório de Genética, Av. Tarquínio Joslin dos Santos, 1000, Jardim Universitário, Zip code 85857-190, Foz do Iguaçu, PR, Brazil
| |
Collapse
|
7
|
Parma P, Veyrunes F, Pailhoux E. Sex Reversal in Non-Human Placental Mammals. Sex Dev 2016; 10:326-344. [PMID: 27529721 DOI: 10.1159/000448361] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 01/31/2023] Open
Abstract
Gonads are very peculiar organs given their bipotential competence. Indeed, early differentiating genital ridges evolve into either of 2 very distinct organs: the testis or the ovary. Accumulating evidence now demonstrates that both genetic pathways must repress the other in order for the organs to differentiate properly, meaning that if this repression is disrupted or attenuated, the other pathway may completely or partially be expressed, leading to disorders of sex development. Among these disorders are the cases of XY male-to-female and XX female-to-male sex reversals as well as true hermaphrodites, in which there is a discrepancy between the chromosomal and gonadal sex. Here, we review known cases of XY and XX sex reversals described in mammals, focusing mostly on domestic animals where sex reversal pathologies occur and on wild species in which deviations from the usual XX/XY system have been documented.
Collapse
Affiliation(s)
- Pietro Parma
- Department of Agricultural and Environmental Sciences, Milan University, Milan, Italy
| | | | | |
Collapse
|
8
|
Montiel EE, Badenhorst D, Lee LS, Literman R, Trifonov V, Valenzuela N. Cytogenetic Insights into the Evolution of Chromosomes and Sex Determination Reveal Striking Homology of Turtle Sex Chromosomes to Amphibian Autosomes. Cytogenet Genome Res 2016; 148:292-304. [DOI: 10.1159/000447478] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2016] [Indexed: 11/19/2022] Open
Abstract
Turtle karyotypes are highly conserved compared to other vertebrates; yet, variation in diploid number (2n = 26-68) reflects profound genomic reorganization, which correlates with evolutionary turnovers in sex determination. We evaluate the published literature and newly collected comparative cytogenetic data (G- and C-banding, 18S-NOR, and telomere-FISH mapping) from 13 species spanning 2n = 28-68 to revisit turtle genome evolution and sex determination. Interstitial telomeric sites were detected in multiple lineages that underwent diploid number and sex determination turnovers, suggesting chromosomal rearrangements. C-banding revealed potential interspecific variation in centromere composition and interstitial heterochromatin at secondary constrictions. 18S-NORs were detected in secondary constrictions in a single chromosomal pair per species, refuting previous reports of multiple NORs in turtles. 18S-NORs are linked to ZW chromosomes in Apalone and Pelodiscus and to X (not Y) in Staurotypus. Notably, comparative genomics across amniotes revealed that the sex chromosomes of several turtles, as well as mammals and some lizards, are homologous to components of Xenopus tropicalis XTR1 (carrying Dmrt1). Other turtle sex chromosomes are homologous to XTR4 (carrying Wt1). Interestingly, all known turtle sex chromosomes, except in Trionychidae, evolved via inversions around Dmrt1 or Wt1. Thus, XTR1 appears to represent an amniote proto-sex chromosome (perhaps linked ancestrally to XTR4) that gave rise to turtle and other amniote sex chromosomes.
Collapse
|
9
|
GIAGIA-ATHANASOPOULOU EVAB, ROVATSOS MICHAILTH, MITSAINAS GEORGEP, MARTIMIANAKIS STEFANOS, LYMBERAKIS PETROS, ANGELOU LIDAXENIAD, MARCHAL JUANALBERTO, SÁNCHEZ ANTONIO. New data on the evolution of the Cretan spiny mouse, Acomys minous (Rodentia: Murinae), shed light on the phylogenetic relationships in the cahirinus group. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2010.01592.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|