1
|
Türkoğlu A, Haliloğlu K, Mohammadi SA, Öztürk A, Bolouri P, Özkan G, Bocianowski J, Pour-Aboughadareh A, Jamshidi B. Genetic Diversity and Population Structure in Türkiye Bread Wheat Genotypes Revealed by Simple Sequence Repeats (SSR) Markers. Genes (Basel) 2023; 14:1182. [PMID: 37372362 DOI: 10.3390/genes14061182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Wheat genotypes should be improved through available germplasm genetic diversity to ensure food security. This study investigated the molecular diversity and population structure of a set of Türkiye bread wheat genotypes using 120 microsatellite markers. Based on the results, 651 polymorphic alleles were evaluated to determine genetic diversity and population structure. The number of alleles ranged from 2 to 19, with an average of 5.44 alleles per locus. Polymorphic information content (PIC) ranged from 0.031 to 0.915 with a mean of 0.43. In addition, the gene diversity index ranged from 0.03 to 0.92 with an average of 0.46. The expected heterozygosity ranged from 0.00 to 0.359 with a mean of 0.124. The unbiased expected heterozygosity ranged from 0.00 to 0.319 with an average of 0.112. The mean values of the number of effective alleles (Ne), genetic diversity of Nei (H) and Shannon's information index (I) were estimated at 1.190, 1.049 and 0.168, respectively. The highest genetic diversity (GD) was estimated between genotypes G1 and G27. In the UPGMA dendrogram, the 63 genotypes were grouped into three clusters. The three main coordinates were able to explain 12.64, 6.38 and 4.90% of genetic diversity, respectively. AMOVA revealed diversity within populations at 78% and between populations at 22%. The current populations were found to be highly structured. Model-based cluster analyses classified the 63 genotypes studied into three subpopulations. The values of F-statistic (Fst) for the identified subpopulations were 0.253, 0.330 and 0.244, respectively. In addition, the expected values of heterozygosity (He) for these sub-populations were recorded as 0.45, 0.46 and 0.44, respectively. Therefore, SSR markers can be useful not only in genetic diversity and association analysis of wheat but also in its germplasm for various agronomic traits or mechanisms of tolerance to environmental stresses.
Collapse
Affiliation(s)
- Aras Türkoğlu
- Department of Field Crops, Faculty of Agriculture, Necmettin Erbakan University, 42310 Konya, Turkey
| | - Kamil Haliloğlu
- Department of Field Crops, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Seyyed Abolgahasem Mohammadi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Ali Öztürk
- Department of Field Crops, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Parisa Bolouri
- Department of Field Crops, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Güller Özkan
- Department of Biology, Faculty of Science, Ankara University, 06100 Ankara, Turkey
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Alireza Pour-Aboughadareh
- Seed and Plant Improvement Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj 31585-854, Iran
| | - Bita Jamshidi
- Department of Food Security and Public Health, Khabat Technical Institute, Erbil Polytechnic University, Erbil 44001, Iraq
| |
Collapse
|
2
|
The potentiality of rice microsatellite markers in assessment of cross-species transferability and genetic diversity of rice and its wild relatives. 3 Biotech 2019; 9:217. [PMID: 31114741 DOI: 10.1007/s13205-019-1757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/11/2019] [Indexed: 10/26/2022] Open
Abstract
The main aim of this study is to assess the potentiality of SSR markers for the identification of the cross-species transferability frequency in a large set of the diverse genome types of wild relative rice along with cultivated rice. Here, we used 18 different rice genotypes representing nine different genome types with 70 SSR markers to investigate the potentiality of cross-species transferability rate. The overall cross-species transferability of SSR markers across the 18 rice genotypes ranged from 38.9% (RM280 and RM447) to 100% (RM490, RM318, RM279, RM18877 and RM20033, RM19303) with an average of 76.58%. Also, cross-species transferability across chromosome ranged from 54.4% (chromosome 4) to 86.5% (chromosome 2) with an average of 74.35%. The polymorphism information content of the markers varied from 0.198 (RM263) to 0.868 (RM510) with a mean of 0.549 ± 0.153, showing high discriminatory power. The highest rate of cross-transferability was observed in O. rufipogon (97%), The highest rate of cross-species transferability was in O. rufipogon (97.00%), followed by O. glaberrima (94.20%), O. nivara (92.80%), Swarna (92.80%), O. longistaminata (91.40%), O. eichingeri (90%), O. barthii (88.50%), O. alta (82.80%), O. australiensis (77.10%), O. grandiglumis (74.20%), O. officinalis (74.20%), Zizania latifolia (70.00%), O. latifolia (68.50%), O. brachyantha (62.80%), Leersia perrieri (57.10%) and O. ridleyi (41.40%) with least in O. coarctata (28.50%). A total of 341 alleles from 70 loci were detected with the number of alleles per locus ranged from 2 to 12. Based on dendrogram analysis, the AA genome groups was separated as distinct group from the rest of the genome types. Similarly, principal coordinate analysis and structure analysis clearly separated the AA genome type from the rest of the genome types. Through the analysis of molecular variance, more variance (51%) was observed among the individual, whereas less (14%) was observed among the population. Thus, our findings may offer a valuable resource for studying the genetic diversity and relationship to facilitate the understanding of the complex mechanism of the origin and evolutionary processes of different Oryza species and wild relative rice.
Collapse
|
3
|
Hechanova SL, Prusty MR, Kim SR, Ballesfin L, Ramos J, Prahalada GD, Jena KK. Monosomic alien addition lines (MAALs) of Oryza rhizomatis in Oryza sativa: production, cytology, alien trait introgression, molecular analysis and breeding application. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2197-2211. [PMID: 30032316 DOI: 10.1007/s00122-018-3147-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/14/2018] [Indexed: 05/23/2023]
Abstract
Key message Development of MAALs and disomic introgression lines derived from the cross between O. sativa and O. rhizomatis to exploit and utilize the valuable traits for rice improvement. The CC genome wild species, Oryza rhizomatis, possesses valuable traits for rice improvement. Unlike other CC genome wild rice, O. rhizomatis is less studied and none of the research has focused on the utilization of this resource in rice breeding. The transfer of novel genes governing the valuable traits from O. rhizomatis is difficult due to high genome incompatibility with O. sativa. Here we report the development of backcross progenies and complete sets of monosomic alien addition lines (MAALs) for the first time from O. rhizomatis in O. sativa line IR31917-45-3-2. Autotetraploid IR31917-45-3-2 (4x = AAAA) was used to generate allotriploid F1, and the F1 plant was backcrossed to IR31917-45-3-2 (2x). Forty-seven BC1F1 and 73 BC2F1 plants were produced with chromosome numbers ranging from 24 to 33 (2x + 9) and 24 to 27 (2x + 3), respectively. A complete set of MAALs were identified by morphological, cytological and marker-based analysis. A total of 116 CC genome-specific InDel markers across the 12 chromosome of rice were used to detect O. rhizomatis chromosome segments in F1, BC1F1, BC2F2, MAALs and disomic introgression lines (DILs). Expressions of major phenotypic traits inherited from O. rhizomatis were observed in MAAL-derived DILs. Small chromosomal segments of O. rhizomatis for chromosomes 1, 2, 4, 5, 6, 7, 10 and 12 were detected in DILs, and some of the introgression lines showed insect resistance against brown planthopper and green leafhopper. These newly developed MAALs and DILs will be useful for gene mining and more precise faster transfer of favorable genes to improve rice cultivars.
Collapse
Affiliation(s)
- Sherry Lou Hechanova
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Manas R Prusty
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Sung-Ryul Kim
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - LaRue Ballesfin
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Joie Ramos
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - G D Prahalada
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Kshirod K Jena
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
4
|
Development and validation of cross-transferable and polymorphic DNA markers for detecting alien genome introgression in Oryza sativa from Oryza brachyantha. Mol Genet Genomics 2016; 291:1783-94. [PMID: 27299359 DOI: 10.1007/s00438-016-1214-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
African wild rice Oryza brachyantha (FF), a distant relative of cultivated rice Oryza sativa (AA), carries genes for pests and disease resistance. Molecular marker assisted alien gene introgression from this wild species to its domesticated counterpart is largely impeded due to the scarce availability of cross-transferable and polymorphic molecular markers that can clearly distinguish these two species. Availability of the whole genome sequence (WGS) of both the species provides a unique opportunity to develop markers, which are cross-transferable. We observed poor cross-transferability (~0.75 %) of O. sativa specific sequence tagged microsatellite (STMS) markers to O. brachyantha. By utilizing the genome sequence information, we developed a set of 45 low cost PCR based co-dominant polymorphic markers (STS and CAPS). These markers were found cross-transferrable (84.78 %) between the two species and could distinguish them from each other and thus allowed tracing alien genome introgression. Finally, we validated a Monosomic Alien Addition Line (MAAL) carrying chromosome 1 of O. brachyantha in O. sativa background using these markers, as a proof of concept. Hence, in this study, we have identified a set molecular marker (comprising of STMS, STS and CAPS) that are capable of detecting alien genome introgression from O. brachyantha to O. sativa.
Collapse
|
5
|
Analysis of genetic mapping in a waxy/dent maize RIL population using SSR and SNP markers. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0208-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Tonosaki K, Nishio T. Identification of species in tribe Brassiceae by dot-blot hybridization using species-specific ITS1 probes. PLANT CELL REPORTS 2010; 29:1179-1186. [PMID: 20683723 DOI: 10.1007/s00299-010-0904-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 07/12/2010] [Accepted: 07/18/2010] [Indexed: 05/28/2023]
Abstract
Simple, reliable methods for identification of species are required for management of many species and lines in a plant gene bank. Species-specific probes were designed from published sequences of the ITS1 region in rDNA of 16 species in Brassica and its related genera, and used as probes for dot-blot hybridization with plant genomic DNA. All the probes detected species-specific signals at dot-blots of genomic DNAs of the 16 species in Brassica, Diplotaxis, Eruca, and Raphanus. Signals of the Brassica digenomic species in the U's triangle, i.e., B. napus, B. juncea, and B. carinata, were detected by the probes of their parental monogenomic species, i.e., B. rapa, B. nigra, and B. oleracea. The probe for B. oleracea showed signals of B. balearica, B. cretica, B. incana, B. insularis, and B. macrocarpa, which have the C genome as B. oleracea. Eruca vesicaria DNA was detected by the probe for E. sativa, which has been classified as a subspecies of E. vescaria. DNA of leaf tissue extracted by an alkaline solution and seed DNA prepared by the NaI method can be used directly for dot-blotting. Misidentification of species was revealed in 20 accessions in the Tohoku University Brassica Seed Bank. These results indicate dot-blot hybridization to be a simple and efficient technique for identification of plant species in a gene bank.
Collapse
Affiliation(s)
- K Tonosaki
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi Aoba-ku, Sendai, Miyagi 981-8555, Japan
| | | |
Collapse
|