1
|
de Assis R, Gonçalves LSA, Guyot R, Vanzela ALL. Abundance of distal repetitive DNA sequences in Capsicum L. (Solanaceae) chromosomes. Genome 2023; 66:269-280. [PMID: 37364373 DOI: 10.1139/gen-2022-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Chili peppers (Solanaceae family) have great commercial value. They are commercialized in natura and used as spices and for ornamental and medicinal purposes. Although three whole genomes have been published, limited information about satellite DNA sequences, their composition, and genomic distribution has been provided. Here, we exploited the noncoding repetitive fraction, represented by satellite sequences, that tends to accumulate in blocks along chromosomes, especially near the chromosome ends of peppers. Two satellite DNA sequences were identified (CDR-1 and CDR-2), characterized and mapped in silico in three Capsicum genomes (C. annuum, C. chinense, and C. baccatum) using data from the published high-coverage sequencing and repeats finding bioinformatic tools. Localization using FISH in the chromosomes of these species and in two others (C. frutescens and C. chacoense), totaling five species, showed signals adjacent to the rDNA sites. A sequence comparison with existing Solanaceae repeats showed that CDR-1 and CDR-2 have different origins but without homology to rDNA sequences. Satellites occupied subterminal chromosomal regions, sometimes collocated with or adjacent to 35S rDNA sequences. Our results expand knowledge about the diversity of subterminal regions of Capsicum chromosomes, showing different amounts and distributions within and between karyotypes. In addition, these sequences may be useful for future phylogenetic studies.
Collapse
Affiliation(s)
- Rafael de Assis
- Laboratório de Citogenética e Diversidade Vegetal, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina 86097-570, Paraná, Brazil
| | | | - Romain Guyot
- Institute de Recherche pour le Développement, CIRAD, Université de Montpellier, UMR DIADE, Montpellier, France
| | | |
Collapse
|
2
|
Silvestri MC, Ortiz AM, Robledo GA, Lavia GI. Chromosome diversity in species of the genus Arachis, revealed by FISH and CMA/DAPI banding, and inferences about their karyotype differentiation. AN ACAD BRAS CIENC 2020; 92:e20191364. [PMID: 32901677 DOI: 10.1590/0001-3765202020191364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/11/2019] [Indexed: 11/22/2022] Open
Abstract
The species of the genus Arachis (Leguminosae) are ordered into nine sections. The assignment of genome types in this genus has been based on cross-compatibility analysis and molecular cytogenetic studies. The latter has also allowed karyotypically establishing well-defined genomes and reassigning the genome of several species. However, most of these studies have been focused mainly on the sections Arachis and Rhizomatosae. To increase the knowledge about the chromosome diversity of the whole genus, here we performed a detailed karyotype characterization of representative species of most of the sections and genomes of Arachis. This characterization included chromosome morphology, CMA/DAPI chromosome banding, and chromosome marker localization (rDNAloci and one satDNA sequence) by fluorescent in situ hybridization (FISH). Based on the data obtained and other previously published data, we established the karyotype similarities by cluster analysis and defined eleven karyotype groups. The grouping was partly coincident with the traditional genome assignment, except for some groups and some individual species. Karyotype similarities among some genomes were also found. The main characteristics of each karyotype group of Arachis were summarized. Together, our results provide information that may be beneficial for future cytogenetic and evolutionary studies, and also contribute to the identification of interspecific hybrids.
Collapse
Affiliation(s)
- MarÍa C Silvestri
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
| | - Alejandra M Ortiz
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina
| | - GermÁn A Robledo
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina.,Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Av. Libertad 5460, 3400 Corrientes, Argentina
| | - Graciela I Lavia
- Instituto de Botánica del Nordeste (CONICET-UNNE, Fac. Cs. Agrarias), Sargento Cabral 2131, C.C. 209, 3400 Corrientes, Argentina.,Facultad de Ciencias Exactas y Naturales y Agrimensura, UNNE, Av. Libertad 5460, 3400 Corrientes, Argentina
| |
Collapse
|
3
|
Seijo G, Samoluk SS, Ortiz AM, Silvestri MC, Chalup L, Robledo G, Lavia GI. Cytological Features of Peanut Genome. COMPENDIUM OF PLANT GENOMES 2017. [DOI: 10.1007/978-3-319-63935-2_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Samoluk SS, Robledo G, Bertioli D, Seijo JG. Evolutionary dynamics of an at-rich satellite DNA and its contribution to karyotype differentiation in wild diploid Arachis species. Mol Genet Genomics 2016; 292:283-296. [DOI: 10.1007/s00438-016-1271-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 11/04/2016] [Indexed: 11/24/2022]
|
5
|
Ribeiro T, Marques A, Novák P, Schubert V, Vanzela ALL, Macas J, Houben A, Pedrosa-Harand A. Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species. Chromosoma 2016; 126:325-335. [DOI: 10.1007/s00412-016-0616-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022]
|
6
|
Agrawal R, Tsujimoto H, Tandon R, Rao SR, Raina SN. Species-genomic relationships among the tribasic diploid and polyploid Carthamus taxa based on physical mapping of active and inactive 18S-5.8S-26S and 5S ribosomal RNA gene families, and the two tandemly repeated DNA sequences. Gene 2013; 521:136-44. [PMID: 23510781 DOI: 10.1016/j.gene.2013.03.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 12/19/2012] [Accepted: 03/07/2013] [Indexed: 11/26/2022]
Abstract
In the genus Carthamus (2n=20, 22, 24, 44, 64; x=10, 11, 12), most of the homologues within and between the chromosome complements are difficult to be identified. In the present work, we used fluorescent in situ hybridisation (FISH) to determine the chromosome distribution of the two rRNA gene families, and the two isolated repeated DNA sequences in the 14 Carthamus taxa. The distinctive variability in the distribution, number and signal intensity of hybridisation sites for 18S-26S and 5S rDNA loci could generally distinguish the 14 Carthamus taxa. Active 18S-26S rDNA sites were generally associated with NOR loci on the nucleolar chromosomes. The two A genome taxa, C. glaucus ssp. anatolicus and C. boissieri with 2n=20, and the two botanical varieties of B genome C. tinctorius (2n=24) had diagnostic FISH patterns. The present results support the origin of C. tinctorius from C. palaestinus. FISH patterns of C. arborescens vis-à-vis the other taxa indicate a clear division of Carthamus taxa into two distinct lineages. Comparative distribution and intensity pattern of 18S-26S rDNA sites could distinguish each of the tetraploid and hexaploid taxa. The present results indicate that C. boissieri (2n=20) is one of the genome donors for C. lanatus and C. lanatus ssp. lanatus (2n=44), and C. lanatus is one of the progenitors for the hexaploid (2n=64) taxa. The association of pCtKpnI-2 repeated sequence with rRNA gene cluster (orphon) in 2-10 nucleolar and non-nucleolar chromosomes and the consistent occurrence of pCtKpnI-1 repeated sequence at the subtelomeric region in all the taxa analysed indicate some functional role of these sequences.
Collapse
Affiliation(s)
- Renuka Agrawal
- Laboratory of Cellular and Molecular Cytogenetics, Department of Botany, University of Delhi, Delhi 110007, India
| | | | | | | | | |
Collapse
|
7
|
Mehrotra S, Goel S, Sharma S, Raina SN, Rajpal VR. Sequence analysis of KpnI repeat sequences to revisit the phylogeny of the Genus Carthamus L. Appl Biochem Biotechnol 2013; 169:1109-25. [PMID: 23306889 DOI: 10.1007/s12010-012-0063-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 12/26/2012] [Indexed: 10/27/2022]
Abstract
Repetitive DNA sequences constitute a significant proportion of eukaryotic genomes. Knowledge about the distribution of repetitive DNA sequences is necessary in order to gain insights into the organization, evolution and behavior of eukaryotic genomes. Therefore, we used two repetitive DNA sequences pCtKpnI-I and pCtKpnI-II, earlier reported in Carthamus tinctorius L. to study the phylogeny and to revise the taxonomic status of the taxa belonging to the genus. The study unraveled two major lines within the genus Carthamus; one line included all the diploid taxa (2n = 24) and the other line comprised the taxa with 2n = 20 and the polyploid taxa (2n = 44 and 64). The results of the present study will prove useful in molecular breeding for improving some targeted agronomic traits in genus Carthamus.
Collapse
Affiliation(s)
- Shweta Mehrotra
- Department of Botany, University of Delhi, Delhi, 110007, India.
| | | | | | | | | |
Collapse
|
8
|
Guarido PCP, de Paula AA, da Silva CRM, Rodriguez C, Vanzela ALL. Hypomethylation of cytosine residues in cold-sensitive regions of Cestrum strigilatum (Solanaceae). Genet Mol Biol 2012; 35:455-9. [PMID: 22888295 PMCID: PMC3389534 DOI: 10.1590/s1415-47572012005000026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/13/2012] [Indexed: 11/22/2022] Open
Abstract
Heterochromatin comprises a fraction of the genome usually with highly repeated DNA sequences and lacks of functional genes. This region can be revealed by using Giemsa C-banding, fluorochrome staining and cytomolecular tools. Some plant species are of particular interest through having a special type of heterochromatin denominated the cold-sensitive region (CSR). Independent of other chromosomal regions, when biological materials are subjected to low temperatures (about 0 °C), CSRs appear slightly stained and decondensed. In this study, we used Cestrum strigilatum (Solanaceae) to understand some aspects of CSR condensation associated with cytosine methylation levels, and to compare the behavior of different heterochromatin types of this species, when subjected to low temperatures.
Collapse
Affiliation(s)
- Paula Carolina Paes Guarido
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Adriano Alves de Paula
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | | | | | - André Luís Laforga Vanzela
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|