1
|
DuMez-Kornegay RN, Baker LS, Morris AJ, DeLoach WLM, Dowen RH. Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation. PLoS Genet 2024; 20:e1011003. [PMID: 38547054 PMCID: PMC10977768 DOI: 10.1371/journal.pgen.1011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/22/2024] [Indexed: 04/02/2024] Open
Abstract
The popularity of the ancient, probiotic-rich beverage Kombucha Tea (KT) has surged in part due to its purported health benefits, which include protection against metabolic diseases; however, these claims have not been rigorously tested and the mechanisms underlying host response to the probiotics in KT are unknown. Here, we establish a reproducible method to maintain C. elegans on a diet exclusively consisting of Kombucha Tea-associated microbes (KTM), which mirrors the microbial community found in the fermenting culture. KT microbes robustly colonize the gut of KTM-fed animals and confer normal development and fecundity. Intriguingly, animals consuming KTMs display a marked reduction in total lipid stores and lipid droplet size. We find that the reduced fat accumulation phenotype is not due to impaired nutrient absorption, but rather it is sustained by a programed metabolic response in the intestine of the host. KTM consumption triggers widespread transcriptional changes within core lipid metabolism pathways, including upregulation of a suite of lysosomal lipase genes that are induced during lipophagy. The elevated lysosomal lipase activity, coupled with a decrease in lipid droplet biogenesis, is partially required for the reduction in host lipid content. We propose that KTM consumption stimulates a fasting-like response in the C. elegans intestine by rewiring transcriptional programs to promote lipid utilization. Our results provide mechanistic insight into how the probiotics in Kombucha Tea reshape host metabolism and how this popular beverage may impact human metabolism.
Collapse
Affiliation(s)
- Rachel N. DuMez-Kornegay
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lillian S. Baker
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Alexis J. Morris
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Whitney L. M. DeLoach
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Robert H. Dowen
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
2
|
Zhou X, Shafique K, Sajid M, Ali Q, Khalili E, Javed MA, Haider MS, Zhou G, Zhu G. Era-like GTP protein gene expression in rice. BRAZ J BIOL 2021; 82:e250700. [PMID: 34259718 DOI: 10.1590/1519-6984.250700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022] Open
Abstract
The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.
Collapse
Affiliation(s)
- X Zhou
- Linyi University, College of Life Science, Linyi, Shandong, China
| | - K Shafique
- Government Sadiq College Women University, Department of Botany, Bahawalpur, Pakistan
| | - M Sajid
- University of Okara, Faculty of Life Sciences, Department of Biotechnology, Okara, Pakistan
| | - Q Ali
- University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - E Khalili
- Tarbiat Modarres University, Faculty of Science, Department of Plant Science, Tehran, Iran
| | - M A Javed
- University of the Punjab Lahore, Department of Plant Breeding and Genetics, Lahore, Pakistan
| | - M S Haider
- University of the Punjab Lahore, Department of Plant Pathology, Lahore, Pakistan
| | - G Zhou
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| | - G Zhu
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Nance J, Frøkjær-Jensen C. The Caenorhabditis elegans Transgenic Toolbox. Genetics 2019; 212:959-990. [PMID: 31405997 PMCID: PMC6707460 DOI: 10.1534/genetics.119.301506] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/01/2019] [Indexed: 12/30/2022] Open
Abstract
The power of any genetic model organism is derived, in part, from the ease with which gene expression can be manipulated. The short generation time and invariant developmental lineage have made Caenorhabditis elegans very useful for understanding, e.g., developmental programs, basic cell biology, neurobiology, and aging. Over the last decade, the C. elegans transgenic toolbox has expanded considerably, with the addition of a variety of methods to control expression and modify genes with unprecedented resolution. Here, we provide a comprehensive overview of transgenic methods in C. elegans, with an emphasis on recent advances in transposon-mediated transgenesis, CRISPR/Cas9 gene editing, conditional gene and protein inactivation, and bipartite systems for temporal and spatial control of expression.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Goh KY, Inoue T. A large transcribed enhancer region regulates C. elegans bed-3 and the development of egg laying muscles. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:519-533. [PMID: 29481869 DOI: 10.1016/j.bbagrm.2018.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/05/2023]
Abstract
Gene expression is regulated by the interaction of the RNA polymerase with various transcription factors at promoter and enhancer elements. Transcriptome analyses found that many non-protein-coding regions are transcribed to produce long non-coding RNAs and enhancer-associated RNAs. Production of these transcripts is associated with activation of nearby protein-coding genes, and at least in some cases, the transcripts themselves mediate this activation. Non-coding transcripts are also reported from large enhancers or clusters of enhancers. However, not much is known about the function of large transcribed enhancer regions during organismal development. Here we investigated a transcribed 10.6 kb intergenic region located upstream of the C. elegans bed-3 gene. We found that parts of this region exhibit tissue-specific promoter and enhancer activities. Deletion of the region disrupts egg laying, a phenotype also observed in bed-3 mutants, but with the severity correlating with the size of the deletion. This phenotype is not caused by overall reduction in bed-3 expression. Rather, deletions reduce bed-3 expression specifically in the mesoderm lineage. We found that bed-3 has a previously unknown function in the generation of sex myoblast (SM) cells from the M lineage, and deletions cause loss of SM cells leading to loss of vulval muscles required for egg laying. Furthermore, injection of dsRNA targeting non-coding transcripts from this region disrupted egg laying in the wild type but not in RNAi-defective mutants. Therefore, the region upstream of bed-3 is required for robust expression of bed-3 in a specific tissue, and non-coding transcripts may mediate this interaction.
Collapse
Affiliation(s)
- Kah Yee Goh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597
| | - Takao Inoue
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597.
| |
Collapse
|
5
|
An SMC-like protein binds and regulates Caenorhabditis elegans condensins. PLoS Genet 2017; 13:e1006614. [PMID: 28301465 PMCID: PMC5373644 DOI: 10.1371/journal.pgen.1006614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/30/2017] [Accepted: 02/01/2017] [Indexed: 01/17/2023] Open
Abstract
Structural Maintenance of Chromosomes (SMC) family proteins participate in multisubunit complexes that govern chromosome structure and dynamics. SMC-containing condensin complexes create chromosome topologies essential for mitosis/meiosis, gene expression, recombination, and repair. Many eukaryotes have two condensin complexes (I and II); C. elegans has three (I, II, and the X-chromosome specialized condensin IDC) and their regulation is poorly understood. Here we identify a novel SMC-like protein, SMCL-1, that binds to C. elegans condensin SMC subunits, and modulates condensin functions. Consistent with a possible role as a negative regulator, loss of SMCL-1 partially rescued the lethal and sterile phenotypes of a hypomorphic condensin mutant, while over-expression of SMCL-1 caused lethality, chromosome mis-segregation, and disruption of condensin IDC localization on X chromosomes. Unlike canonical SMC proteins, SMCL-1 lacks hinge and coil domains, and its ATPase domain lacks conserved amino acids required for ATP hydrolysis, leading to the speculation that it may inhibit condensin ATPase activity. SMCL-1 homologs are apparent only in the subset of Caenorhabditis species in which the condensin I and II subunit SMC-4 duplicated to create the condensin IDC- specific subunit DPY-27, suggesting that SMCL-1 helps this lineage cope with the regulatory challenges imposed by evolution of a third condensin complex. Our findings uncover a new regulator of condensins and highlight how the duplication and divergence of SMC complex components in various lineages has created new proteins with diverse functions in chromosome dynamics.
Collapse
|
6
|
Chen X, Feng X, Guang S. Targeted genome engineering in Caenorhabditis elegans. Cell Biosci 2016; 6:60. [PMID: 27980716 PMCID: PMC5146831 DOI: 10.1186/s13578-016-0125-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
The generation of mutants and transgenes are indispensible for biomedical research. In the nematode Caenorhabditis elegans, a series of methods have been developed to introduce genome modifications, including random mutagenesis by chemical reagents, ionizing radiation and transposon insertion. In addition, foreign DNA can be integrated into the genome through microparticle bombardment approach or by irradiation of animals carrying microinjected extrachromosomal arrays. Recent research has revolutionized the genome engineering technologies by using customized DNA nucleases to manipulate particular genes and genomic sequences. Many streamlined editing strategies are developed to simplify the experimental procedure and minimize the cost. In this review, we will summarize the recent progress of the site-specific genome editing methods in C. elegans, including the Cre/LoxP, FLP/FRT, MosTIC system, zinc-finger nucleases (ZFNs), transcriptional activator-like nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease. Particularly, the recent studies of CRISPR/Cas9-mediated genome editing method in C. elegans will be emphatically discussed.
Collapse
Affiliation(s)
- Xiangyang Chen
- School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| | - Xuezhu Feng
- School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| | - Shouhong Guang
- School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| |
Collapse
|
7
|
Schumacher F, Chakraborty S, Kleuser B, Gulbins E, Schwerdtle T, Aschner M, Bornhorst J. Highly sensitive isotope-dilution liquid-chromatography-electrospray ionization-tandem-mass spectrometry approach to study the drug-mediated modulation of dopamine and serotonin levels in Caenorhabditis elegans. Talanta 2015; 144:71-9. [PMID: 26452793 PMCID: PMC4600537 DOI: 10.1016/j.talanta.2015.05.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/20/2015] [Accepted: 05/23/2015] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) and serotonin (SRT) are monoamine neurotransmitters that play a key role in regulating the central and peripheral nervous system. Their impaired metabolism has been implicated in several neurological disorders, such as Parkinson's disease and depression. Consequently, it is imperative to monitor changes in levels of these low-abundant neurotransmitters and their role in mediating disease. For the first time, a rapid, specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantification of DA and SRT in the nematode Caenorhabditis elegans (C. elegans). This model organism offers a unique approach for studying the effect of various drugs and environmental conditions on neurotransmitter levels, given by the conserved DA and SRT biology, including synaptic release, trafficking and formation. We introduce a novel sample preparation protocol incorporating the usage of sodium thiosulfate in perchloric acid as extraction medium that assures high recovery of the relatively unstable neurotransmitters monitored. Moreover, the use of both deuterated internal standards and the multiple reaction monitoring (MRM) technique allows for unequivocal quantification. Thereby, to the best of our knowledge, we achieve a detection sensitivity that clearly exceeds those of published DA and SRT quantification methods in various matrices. We are the first to show that exposure of C. elegans to the monoamine oxidase B (MAO-B) inhibitor selegiline or the catechol-O-methyltransferase (COMT) inhibitor tolcapone, in order to block DA and SRT degradation, resulted in accumulation of the respective neurotransmitter. Assessment of a behavioral output of the dopaminergic system (basal slowing response) corroborated the analytical LC-MS/MS data. Thus, utilization of the C. elegans model system in conjunction with our analytical method is well-suited to investigate drug-mediated modulation of the DA and SRT system in order to identify compounds with neuroprotective or regenerative properties.
Collapse
Affiliation(s)
- Fabian Schumacher
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Sudipta Chakraborty
- Neuroscience Graduate Program, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
8
|
Rüegger S, Miki TS, Hess D, Großhans H. The ribonucleotidyl transferase USIP-1 acts with SART3 to promote U6 snRNA recycling. Nucleic Acids Res 2015; 43:3344-57. [PMID: 25753661 PMCID: PMC4381082 DOI: 10.1093/nar/gkv196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/24/2015] [Indexed: 02/02/2023] Open
Abstract
The spliceosome is a large molecular machine that serves to remove the intervening sequences that are present in most eukaryotic pre-mRNAs. At its core are five small nuclear ribonucleoprotein complexes, the U1, U2, U4, U5 and U6 snRNPs, which undergo dynamic rearrangements during splicing. Their reutilization for subsequent rounds of splicing requires reversion to their original configurations, but little is known about this process. Here, we show that ZK863.4/USIP-1 (U Six snRNA-Interacting Protein-1) is a ribonucleotidyl transferase that promotes accumulation of the Caenorhabditis elegans U6 snRNA. Endogenous USIP-1–U6 snRNA complexes lack the Lsm proteins that constitute the protein core of the U6 snRNP, but contain the U6 snRNP recycling factor SART3/B0035.12. Furthermore, co-immunoprecipitation experiments suggest that SART3 but not USIP-1 occurs also in a separate complex containing both the U4 and U6 snRNPs. Based on this evidence, genetic interaction between usip-1 and sart-3, and the apparent dissociation of Lsm proteins from the U6 snRNA during spliceosome activation, we propose that USIP-1 functions upstream of SART3 to promote U6 snRNA recycling.
Collapse
Affiliation(s)
- Stefan Rüegger
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Takashi S Miki
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| |
Collapse
|
9
|
Jiang C, Chen C, Huang Z, Liu R, Verdier J. ITIS, a bioinformatics tool for accurate identification of transposon insertion sites using next-generation sequencing data. BMC Bioinformatics 2015; 16:72. [PMID: 25887332 PMCID: PMC4351942 DOI: 10.1186/s12859-015-0507-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/20/2015] [Indexed: 08/30/2023] Open
Abstract
Background Transposable elements constitute an important part of the genome and are essential in adaptive mechanisms. Transposition events associated with phenotypic changes occur naturally or are induced in insertional mutant populations. Transposon mutagenesis results in multiple random insertions and recovery of most/all the insertions is critical for forward genetics study. Using genome next-generation sequencing data and appropriate bioinformatics tool, it is plausible to accurately identify transposon insertion sites, which could provide candidate causal mutations for desired phenotypes for further functional validation. Results We developed a novel bioinformatics tool, ITIS (Identification of Transposon Insertion Sites), for localizing transposon insertion sites within a genome. It takes next-generation genome re-sequencing data (NGS data), transposon sequence, and reference genome sequence as input, and generates a list of highly reliable candidate insertion sites as well as zygosity information of each insertion. Using a simulated dataset and a case study based on an insertional mutant line from Medicago truncatula, we showed that ITIS performed better in terms of sensitivity and specificity than other similar algorithms such as RelocaTE, RetroSeq, TEMP and TIF. With the case study data, we demonstrated the efficiency of ITIS by validating the presence and zygosity of predicted insertion sites of the Tnt1 transposon within a complex plant system, M. truncatula. Conclusion This study showed that ITIS is a robust and powerful tool for forward genetic studies in identifying transposable element insertions causing phenotypes. ITIS is suitable in various systems such as cell culture, bacteria, yeast, insect, mammal and plant. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0507-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuan Jiang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China. .,University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Chao Chen
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China. .,University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Ziyue Huang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| | - Jerome Verdier
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China.
| |
Collapse
|
10
|
Cornes E, Quéré CAL, Giordano-Santini R, Dupuy D. Applying antibiotic selection markers for nematode genetics. Methods 2014; 68:403-8. [PMID: 24821108 DOI: 10.1016/j.ymeth.2014.04.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 04/18/2014] [Indexed: 01/30/2023] Open
Abstract
Antibiotic selection markers have been recently developed in the multicellular model organism Caenorhabditis elegans and other related nematode species, opening great opportunities in the field of nematode transgenesis. Here we describe how these antibiotic selection systems can be easily combined with many well-established genetic approaches to study gene function, improving time- and cost-effectiveness of the nematode genetic toolbox.
Collapse
Affiliation(s)
- Eric Cornes
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat, Barcelona 08908, Spain; Univ. Bordeaux, IECB, Laboratoire ARNA, F-33600 Pessac, France; INSERM, U869, Laboratoire ARNA, F-33000 Bordeaux, France
| | - Cécile A L Quéré
- Univ. Bordeaux, IECB, Laboratoire ARNA, F-33600 Pessac, France; INSERM, U869, Laboratoire ARNA, F-33000 Bordeaux, France
| | - Rosina Giordano-Santini
- Molecular and Cellular Neurobiology Laboratory, The University of Queensland, Queensland Brain Institute, Qld 4072, Australia
| | - Denis Dupuy
- Univ. Bordeaux, IECB, Laboratoire ARNA, F-33600 Pessac, France; INSERM, U869, Laboratoire ARNA, F-33000 Bordeaux, France.
| |
Collapse
|
11
|
Exciting prospects for precise engineering of Caenorhabditis elegans genomes with CRISPR/Cas9. Genetics 2014; 195:635-42. [PMID: 24190921 DOI: 10.1534/genetics.113.156521] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
With remarkable speed, the CRISPR-Cas9 nuclease has become the genome-editing tool of choice for essentially all genetically tractable organisms. Targeting specific DNA sequences is conceptually simple because the Cas9 nuclease can be guided by a single, short RNA (sgRNA) to introduce double-strand DNA breaks (DSBs) at precise locations. Here I contrast and highlight protocols recently developed by eight different research groups, six of which are published in GENETICS, to modify the Caenorhabditis elegans genome using CRISPR/Cas9. This reverse engineering tool levels the playing field for experimental geneticists.
Collapse
|
12
|
Abstract
Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal.
Collapse
Affiliation(s)
- Lena M Kutscher
- Laboratory of Developmental Genetics, The Rockefeller University, New York NY 10065, USA.
| | | |
Collapse
|
13
|
Chen P, Martinez-Finley EJ, Bornhorst J, Chakraborty S, Aschner M. Metal-induced neurodegeneration in C. elegans. Front Aging Neurosci 2013; 5:18. [PMID: 23730287 PMCID: PMC3657624 DOI: 10.3389/fnagi.2013.00018] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/05/2013] [Indexed: 11/13/2022] Open
Abstract
The model species, Caenorhabditis elegans, has been used as a tool to probe for mechanisms underlying numerous neurodegenerative diseases. This use has been exploited to study neurodegeneration induced by metals. The allure of the nematode comes from the ease of genetic manipulation, the ability to fluorescently label neuronal subtypes, and the relative simplicity of the nervous system. Notably, C. elegans have approximately 60-80% of human genes and contain genes involved in metal homeostasis and transport, allowing for the study of metal-induced degeneration in the nematode. This review discusses methods to assess degeneration as well as outlines techniques for genetic manipulation and presents a comprehensive survey of the existing literature on metal-induced degeneration studies in the worm.
Collapse
Affiliation(s)
- Pan Chen
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | | | - Julia Bornhorst
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | - Sudipta Chakraborty
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
| | - Michael Aschner
- Department of Pediatrics, Vanderbilt University Medical CenterNashville, TN, USA
- Department of Pharmacology, the Kennedy Center for Research on Human Development, and the Center for Molecular Toxicology, Vanderbilt University Medical CenterNashville, TN, USA
| |
Collapse
|
14
|
Robert VJP. Engineering the Caenorhabditis elegans genome by Mos1-induced transgene-instructed gene conversion. Methods Mol Biol 2012; 859:189-201. [PMID: 22367873 DOI: 10.1007/978-1-61779-603-6_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Mos1-induced transgene-instructed gene conversion (MosTIC) is a technique of choice to engineer the genome of the nematode Caenorhabditis elegans. MosTIC is initiated by the excision of Mos1, a DNA transposon of the Tc1/Mariner super family that can be mobilized in the germ line of C. elegans. Mos1 excision creates a DNA double-strand break that is repaired by several cellular mechanisms, including transgene-instructed gene conversion. For MosTIC, the transgenic repair template used by the gene conversion machinery is made of sequences that share DNA homologies with the genomic region to engineer and carries the modifications to be introduced in the genome. In this chapter, we present two MosTIC protocols routinely used.
Collapse
Affiliation(s)
- Valérie J P Robert
- Laboratory of Molecular and Cellular Biology, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
15
|
Vallin E, Gallagher J, Granger L, Martin E, Belougne J, Maurizio J, Duverger Y, Scaglione S, Borrel C, Cortier E, Abouzid K, Carre-Pierrat M, Gieseler K, Ségalat L, Kuwabara PE, Ewbank JJ. A genome-wide collection of Mos1 transposon insertion mutants for the C. elegans research community. PLoS One 2012; 7:e30482. [PMID: 22347378 PMCID: PMC3275553 DOI: 10.1371/journal.pone.0030482] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/16/2011] [Indexed: 11/24/2022] Open
Abstract
Methods that use homologous recombination to engineer the genome of C. elegans commonly use strains carrying specific insertions of the heterologous transposon Mos1. A large collection of known Mos1 insertion alleles would therefore be of general interest to the C. elegans research community. We describe here the optimization of a semi-automated methodology for the construction of a substantial collection of Mos1 insertion mutant strains. At peak production, more than 5,000 strains were generated per month. These strains were then subject to molecular analysis, and more than 13,300 Mos1 insertions characterized. In addition to targeting directly more than 4,700 genes, these alleles represent the potential starting point for the engineered deletion of essentially all C. elegans genes and the modification of more than 40% of them. This collection of mutants, generated under the auspices of the European NEMAGENETAG consortium, is publicly available and represents an important research resource.
Collapse
Affiliation(s)
- Elodie Vallin
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Joseph Gallagher
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Laure Granger
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Edwige Martin
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Jérôme Belougne
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Julien Maurizio
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Yohann Duverger
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Sarah Scaglione
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| | - Caroline Borrel
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Elisabeth Cortier
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Karima Abouzid
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Maité Carre-Pierrat
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Plateforme “Biologie de Caenorhabditis elegans”, CNRS UMS3421, Campus de la Doua, Villeurbanne, France
| | - Kathrin Gieseler
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laurent Ségalat
- Centre de Génétique et de Physiologie Moléculaires et Cellulaires, CNRS UMR 5534, Campus de la Doua, Villeurbanne, France
- Université Claude Bernard Lyon 1, Villeurbanne, France
| | | | - Jonathan J. Ewbank
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Marseille, France
- INSERM, U1104, Marseille, France
- CNRS, UMR7280, Marseille, France
| |
Collapse
|
16
|
Of model hosts and man: using Caenorhabditis elegans, Drosophila melanogaster and Galleria mellonella as model hosts for infectious disease research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 710:11-7. [PMID: 22127881 DOI: 10.1007/978-1-4419-5638-5_2] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The use of invertebrate model hosts has increased in popularity due to numerous advantages of invertebrates over mammalian models, including ethical, logistical and budgetary features. This review provides an introduction to three model hosts, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and the larvae of Galleria mellonella, the greater wax moth. It highlights principal experimental advantages of each model, for C. elegans the ability to run high-throughput assays, for D. melanogaster the evolutionarily conserved innate immune response, and for G. mellonella the ability to conduct experiments at 37°C and easily inoculate a precise quantity of pathogen. It additionally discusses recent research that has been conducted with each host to identify pathogen virulence factors, study the immune response, and evaluate potential antimicrobial compounds, focusing principally on fungal pathogens.
Collapse
|
17
|
Boulin T, Hobert O. From genes to function: the C. elegans genetic toolbox. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:114-37. [PMID: 23801671 DOI: 10.1002/wdev.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review aims to provide an overview of the technologies which make the nematode Caenorhabditis elegans an attractive genetic model system. We describe transgenesis techniques and forward and reverse genetic approaches to isolate mutants and clone genes. In addition, we discuss the new possibilities offered by genome engineering strategies and next-generation genome analysis tools.
Collapse
Affiliation(s)
- Thomas Boulin
- Department of Biology, Institut de Biologie de l'École Normale Supérieure, Paris, France.
| | | |
Collapse
|
18
|
The early bird catches the worm: new technologies for the Caenorhabditis elegans toolkit. Nat Rev Genet 2011; 12:793-801. [PMID: 21969037 DOI: 10.1038/nrg3050] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The inherent simplicity of Caenorhabditis elegans and its extensive genetic toolkit make it ideal for studying complex biological processes. Recent developments further increase the usefulness of the worm, including new methods for: altering gene expression, altering physiology using optogenetics, manipulating large numbers of worms, automating laborious processes and processing high-resolution images. These developments both enhance the worm as a model for studying processes such as development and ageing and make it an attractive model in areas such as neurobiology and behaviour.
Collapse
|
19
|
Giordano-Santini R, Dupuy D. Selectable genetic markers for nematode transgenesis. Cell Mol Life Sci 2011; 68:1917-27. [PMID: 21431833 PMCID: PMC11115105 DOI: 10.1007/s00018-011-0670-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/03/2011] [Accepted: 03/10/2011] [Indexed: 11/28/2022]
Abstract
The nematode Caenorhabditis elegans has been used to study genetics and development since the mid-1970s. Over the years, the arsenal of techniques employed in this field has grown steadily in parallel with the number of researchers using this model. Since the introduction of C. elegans transgenesis, nearly 20 years ago, this system has been extensively used in areas such as rescue experiments, gene expression studies, and protein localization. The completion of the C. elegans genome sequence paved the way for genome-wide studies requiring higher throughput and improved scalability than provided by traditional genetic markers. The development of antibiotic selection systems for nematode transgenesis addresses these requirements and opens the possibility to apply transgenesis to investigate biological functions in other nematode species for which no genetic markers had been developed to date.
Collapse
Affiliation(s)
- Rosina Giordano-Santini
- Genome Regulation and Evolution, Inserm U869, Université de Bordeaux, Institut Européen de Chimie et Biologie (IECB), 2, rue Robert Escarpit, 33607 Pessac, France
| | - Denis Dupuy
- Genome Regulation and Evolution, Inserm U869, Université de Bordeaux, Institut Européen de Chimie et Biologie (IECB), 2, rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
20
|
Zeiser E, Frøkjær-Jensen C, Jorgensen E, Ahringer J. MosSCI and gateway compatible plasmid toolkit for constitutive and inducible expression of transgenes in the C. elegans germline. PLoS One 2011; 6:e20082. [PMID: 21637852 PMCID: PMC3102689 DOI: 10.1371/journal.pone.0020082] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/18/2011] [Indexed: 11/19/2022] Open
Abstract
Here we describe a toolkit for the production of fluorescently tagged proteins in
the C. elegans germline and early embryo using Mos1-mediated
single copy insertion (MosSCI) transformation. We have generated promoter and
3′UTR fusions to sequences of different fluorescent proteins yielding
constructs for germline expression that are compatible with MosSCI MultiSite
Gateway vectors. These vectors allow tagged transgene constructs to be inserted
as single copies into known sites in the C. elegans genome
using MosSCI. We also show that two C. elegans heat shock
promoters (Phsp-16.2 and Phsp-16.41) can be
used to induce transgene expression in the germline when inserted via MosSCI
transformation. This flexible set of new vectors, available to the research
community in a plasmid repository, should facilitate research focused on the
C. elegans germline and early embryo.
Collapse
Affiliation(s)
- Eva Zeiser
- The Gurdon Institute and Department of
Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Christian Frøkjær-Jensen
- Department of Biomedical Sciences and Danish
National Research Foundation Centre for Cardiac Arrhythmia, University of
Copenhagen, Copenhagen, Denmark
- Howard Hughes Medical Institute, Department of
Biology, University of Utah, Salt Lake City, Utah, United States of
America
| | - Erik Jorgensen
- Howard Hughes Medical Institute, Department of
Biology, University of Utah, Salt Lake City, Utah, United States of
America
| | - Julie Ahringer
- The Gurdon Institute and Department of
Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 2011; 188:731-43. [PMID: 21515576 DOI: 10.1534/genetics.111.126995] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Drosophila Gene Disruption Project (GDP) has created a public collection of mutant strains containing single transposon insertions associated with different genes. These strains often disrupt gene function directly, allow production of new alleles, and have many other applications for analyzing gene function. Here we describe the addition of ∼7600 new strains, which were selected from >140,000 additional P or piggyBac element integrations and 12,500 newly generated insertions of the Minos transposon. These additions nearly double the size of the collection and increase the number of tagged genes to at least 9440, approximately two-thirds of all annotated protein-coding genes. We also compare the site specificity of the three major transposons used in the project. All three elements insert only rarely within many Polycomb-regulated regions, a property that may contribute to the origin of "transposon-free regions" (TFRs) in metazoan genomes. Within other genomic regions, Minos transposes essentially at random, whereas P or piggyBac elements display distinctive hotspots and coldspots. P elements, as previously shown, have a strong preference for promoters. In contrast, piggyBac site selectivity suggests that it has evolved to reduce deleterious and increase adaptive changes in host gene expression. The propensity of Minos to integrate broadly makes possible a hybrid finishing strategy for the project that will bring >95% of Drosophila genes under experimental control within their native genomic contexts.
Collapse
|
22
|
Verbrugghe KJC, Chan RC. Imaging C. elegans embryos using an epifluorescent microscope and open source software. J Vis Exp 2011:2625. [PMID: 21490567 PMCID: PMC3197319 DOI: 10.3791/2625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cellular processes, such as chromosome assembly, segregation and cytokinesis,are inherently dynamic. Time-lapse imaging of living cells, using fluorescent-labeled reporter proteins or differential interference contrast (DIC) microscopy, allows for the examination of the temporal progression of these dynamic events which is otherwise inferred from analysis of fixed samples1,2. Moreover, the study of the developmental regulations of cellular processes necessitates conducting time-lapse experiments on an intact organism during development. The Caenorhabiditis elegans embryo is light-transparent and has a rapid, invariant developmental program with a known cell lineage3, thus providing an ideal experiment model for studying questions in cell biology4,5and development6-9. C. elegans is amendable to genetic manipulation by forward genetics (based on random mutagenesis10,11) and reverse genetics to target specific genes (based on RNAi-mediated interference and targeted mutagenesis12-15). In addition, transgenic animals can be readily created to express fluorescently tagged proteins or reporters16,17. These traits combine to make it easy to identify the genetic pathways regulating fundamental cellular and developmental processes in vivo18-21. In this protocol we present methods for live imaging of C. elegans embryos using DIC optics or GFP fluorescence on a compound epifluorescent microscope. We demonstrate the ease with which readily available microscopes, typically used for fixed sample imaging, can also be applied for time-lapse analysis using open-source software to automate the imaging process.
Collapse
|
23
|
Robert VJP, Bessereau JL. Genome engineering by transgene-instructed gene conversion in C. elegans. Methods Cell Biol 2011; 106:65-88. [PMID: 22118274 DOI: 10.1016/b978-0-12-544172-8.00003-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nematode Caenorhabditis elegans is an anatomically simple metazoan that has been used over the last 40 years to address an extremely wide range of biological questions. One major advantage of the C. elegans system is the possibility to conduct large-scale genetic screens on randomly mutagenized animals, either looking for a phenotype of interest and subsequently relate the mutated gene to the biological process under study ("forward genetics"), or screening for molecular lesions impairing the function of a specific gene and later analyze the phenotype of the mutant ("reverse genetics"). However, the nature of the genomic lesion is not controlled in either strategy. Here we describe a technique to engineer customized mutations in the C. elegans genome by homologous recombination. This technique, called MosTIC (for Mos1 excision induced transgene-instructed gene conversion), requires a C. elegans strain containing an insertion of the Drosophila transposon Mos1 within the locus to modify. Expression of the Mos transposase in the germ line triggers Mos1 excision, which causes a DNA double strand break (DSB) in the chromosome at the excision site. The DSB locally stimulates DNA repair by homologous recombination, which can sometimes occur between the chromosome and a transgene containing sequence homologous to the broken locus. In that case, sequence variations contained in the repair template will be copied by gene conversion into the genome. Here we provide a detailed protocol of the MosTIC technique, which can be used to introduce point mutations and generate knockout and knock-in alleles.
Collapse
Affiliation(s)
- Valérie J P Robert
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
| | | |
Collapse
|
24
|
Abstract
The ability to manipulate the genome of organisms at will is perhaps the single most useful ability for the study of biological systems. Techniques for the generation of transgenics in the nematode Caenorhabditis elegans became available in the late 1980s. Since then, improvements to the original approach have been made to address specific limitations with transgene expression, expand on the repertoire of the types of biological information that transgenes can provide, and begin to develop methods to target transgenes to defined chromosomal locations. Many recent, detailed protocols have been published, and hence in this chapter, we will review various approaches to making C. elegans transgenics, discuss their applications, and consider their relative advantages and disadvantages. Comments will also be made on anticipated future developments and on the application of these methods to other nematodes.
Collapse
Affiliation(s)
- Vida Praitis
- Biology Department, Grinnell College, Grinnell, Iowa, USA
| | | |
Collapse
|
25
|
Abstract
Reverse genetics consists in the modification of the activity of a target gene to analyse the phenotypic consequences. Four main approaches are used towards this goal and will be explained in this review. Two of them are centred on genome alterations. Mutations produced by random chemical or insertional mutagenesis can be screened to recover only mutants in a specific gene of interest. Alternatively, these alterations may be specifically targeted on a gene of interest by HR (homologous recombination). The other two approaches are centred on mRNA. RNA interference is a powerful method to reduce the level of gene products, while MO (morpholino) antisense oligonucleotides alter mRNA metabolism or translation. Some model species, such as Drosophila, are amenable to most of these approaches, whereas other model species are restricted to one of them. For example, in mice and yeasts, gene targeting by HR is prevalent, whereas in Xenopus and zebrafish MO oligonucleotides are mainly used. Genome-wide collections of mutants or inactivated models obtained in several species by these approaches have been made and will help decipher gene functions in the post-genomic era.
Collapse
|
26
|
An antibiotic selection marker for nematode transgenesis. Nat Methods 2010; 7:721-3. [DOI: 10.1038/nmeth.1494] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 06/14/2010] [Indexed: 11/08/2022]
|
27
|
Abstract
Current high-throughput screening methods for drug discovery rely on the existence of targets. Moreover, most of the hits generated during screenings turn out to be invalid after further testing in animal models. To by-pass these limitations, efforts are now being made to screen chemical libraries on whole animals. One of the most commonly used animal model in biology is the murine model Mus musculus. However, its cost limit its use in large-scale therapeutic screening. In contrast, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, and the fish Danio rerio are gaining momentum as screening tools. These organisms combine genetic amenability, low cost and culture conditions that are compatible with large-scale screens. Their main advantage is to allow high-throughput screening in a whole-animal context. Moreover, their use is not dependent on the prior identification of a target and permits the selection of compounds with an improved safety profile. This review surveys the versatility of these animal models for drug discovery and discuss the options available at this day.
Collapse
|
28
|
Bessereau JL. Knock it down, switch it on. Nat Methods 2010; 7:439-41. [DOI: 10.1038/nmeth0610-439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Dupuy AJ. Transposon-based screens for cancer gene discovery in mouse models. Semin Cancer Biol 2010; 20:261-8. [PMID: 20478384 DOI: 10.1016/j.semcancer.2010.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 05/05/2010] [Accepted: 05/10/2010] [Indexed: 01/29/2023]
Abstract
Significant emphasis has recently been placed on the characterization of the human cancer genome. This effort has been assisted by the development of new DNA sequencing technologies that allow the genomes of individual tumors to be analyzed in much greater detail. However, the genetic complexity of human cancer has complicated the identification of driver mutations among the more abundant passenger mutations found in tumors. Recently, the Sleeping Beauty (SB) transposon system has been engineered to model cancer in mice. SB-induced tumors are produced by transposon insertional mutagenesis, thus the tagged mutations facilitate the identification of novel cancer genes. This review provides a brief summary of the SB system and its use in modeling cancer in mice.
Collapse
Affiliation(s)
- Adam J Dupuy
- Department of Anatomy & Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
30
|
Frøkjaer-Jensen C, Davis MW, Hollopeter G, Taylor J, Harris TW, Nix P, Lofgren R, Prestgard-Duke M, Bastiani M, Moerman DG, Jorgensen EM. Targeted gene deletions in C. elegans using transposon excision. Nat Methods 2010; 7:451-3. [PMID: 20418868 PMCID: PMC2878396 DOI: 10.1038/nmeth.1454] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/29/2010] [Indexed: 01/25/2023]
Abstract
We have developed a method, MosDel, to generate targeted knock-outs of genes in C. elegans. We make use of the Mos1 transposase to excise a Mos1 transposon adjacent to the region to be deleted. The double-strand break is repaired using injected DNA as a template. Repair can delete up to 25 kb of DNA and simultaneously insert a positive selection marker.
Collapse
Affiliation(s)
- Christian Frøkjaer-Jensen
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|