1
|
Li Y, Zhang P, Sheng W, Zhang Z, Rose RJ, Song Y. Securing maize reproductive success under drought stress by harnessing CO 2 fertilization for greater productivity. FRONTIERS IN PLANT SCIENCE 2023; 14:1221095. [PMID: 37860252 PMCID: PMC10582713 DOI: 10.3389/fpls.2023.1221095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
Securing maize grain yield is crucial to meet food and energy needs for the future growing population, especially under frequent drought events and elevated CO2 (eCO2) due to climate change. To maximize the kernel setting rate under drought stress is a key strategy in battling against the negative impacts. Firstly, we summarize the major limitations to leaf source and kernel sink in maize under drought stress, and identified that loss in grain yield is mainly attributed to reduced kernel set. Reproductive drought tolerance can be realized by collective contribution with a greater assimilate import into ear, more available sugars for ovary and silk use, and higher capacity to remobilize assimilate reserve. As such, utilization of CO2 fertilization by improved photosynthesis and greater reserve remobilization is a key strategy for coping with drought stress under climate change condition. We propose that optimizing planting methods and mining natural genetic variation still need to be done continuously, meanwhile, by virtue of advanced genetic engineering and plant phenomics tools, the breeding program of higher photosynthetic efficiency maize varieties adapted to eCO2 can be accelerated. Consequently, stabilizing maize production under drought stress can be achieved by securing reproductive success by harnessing CO2 fertilization.
Collapse
Affiliation(s)
- Yangyang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Pengpeng Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenjing Sheng
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Zixiang Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Youhong Song
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Zhao Z, Liu Z, Zhou Y, Wang J, Zhang Y, Yu X, Wu R, Guo C, Qin A, Bawa G, Sun X. Creation of cotton mutant library based on linear electron accelerator radiation mutation. Biochem Biophys Rep 2022; 30:101228. [PMID: 35243011 PMCID: PMC8867050 DOI: 10.1016/j.bbrep.2022.101228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Cotton (Gossypium spp.) is one of the most important cash crops worldwide. At present, new cotton varieties are mainly produced through conventional cross breeding, which is limited by available germplasm. Although the genome of cotton has been fully sequenced, research on the function of specific genes lags behind due to the lack of sufficient genetic material. Therefore, it is very important to create a cotton mutant library to create new, higher-quality varieties and identify genes associated with the regulation of key traits. Traditional mutagenic strategies, such as physical, chemical, and site-directed mutagenesis, are relatively costly, inefficient, and difficult to perform. In this study, we used a radiation mutation method based on linear electron acceleration to mutate cotton variety 'TM-1', for which a whole-genome sequence has previously been performed, to create a high throughput cotton mutant library. Abundant phenotypic variation was observed in the progeny population for three consecutive generations, including cotton fiber color variation, plant dwarfing, significant improvement of yield traits, and increased sensitivity to Verticillium wilt. These results show that radiation mutagenesis is an effective and feasible method to create plant mutant libraries.
Collapse
Affiliation(s)
| | | | - Yaping Zhou
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Jiajing Wang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yixin Zhang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xiaole Yu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Rui Wu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Chenxi Guo
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Aizhi Qin
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - George Bawa
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| |
Collapse
|
3
|
Nucleotide polymorphisms and haplotype diversity of RTCS gene in China elite maize inbred lines. PLoS One 2013; 8:e56495. [PMID: 23437145 PMCID: PMC3577901 DOI: 10.1371/journal.pone.0056495] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 01/09/2013] [Indexed: 12/15/2022] Open
Abstract
The maize RTCS gene, encoding a LOB domain transcription factor, plays important roles in the initiation of embryonic seminal and postembryonic shoot-borne root. In this study, the genomic sequences of this gene in 73 China elite inbred lines, including 63 lines from 5 temperate heteroric groups and 10 tropic germplasms, were obtained, and the nucleotide polymorphisms and haplotype diversity were detected. A total of 63 sequence variants, including 44 SNPs and 19 indels, were identified at this locus, and most of them were found to be located in the regions of UTR and intron. The coding region of this gene in all tested inbred lines carried 14 haplotypes, which encoding 7 deferring RTCS proteins. Analysis of the polymorphism sites revealed that at least 6 recombination events have occurred. Among all 6 groups tested, only the P heterotic group had a much lower nucleotide diversity than the whole set, and selection analysis also revealed that only this group was under strong negative selection. However, the set of Huangzaosi and its derived lines possessed a higher nucleotide diversity than the whole set, and no selection signal were identified.
Collapse
|
4
|
Research progresses on the key enzymes involved in sucrose metabolism in maize. Carbohydr Res 2012; 368:29-34. [PMID: 23318271 DOI: 10.1016/j.carres.2012.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 11/22/2022]
Abstract
Sucrose, as the major product of photosynthesis, is a vital metabolite and signaling molecule in higher plants. Three enzymes are responsible for the synthesis, transport, and degradation of sucrose. In this article, the gene structure, expression and regulation, and the physiological functions of the key enzymes involved in sucrose metabolism in maize are reviewed, moreover, the existing problems of the sucrose metabolism research were discussed in detail, and we present our ideas for future research.
Collapse
|