1
|
Detecting purging of inbreeding depression by a slow rate of inbreeding for various traits: the impact of environmental and experimental conditions. Heredity (Edinb) 2021; 127:10-20. [PMID: 33903740 PMCID: PMC8249611 DOI: 10.1038/s41437-021-00436-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 02/02/2023] Open
Abstract
Inbreeding depression (ID) has since long been recognized as a significant factor in evolutionary biology. It is mainly the consequence of (partially) recessive deleterious mutations maintained by mutation-selection balance in large random mating populations. When population size is reduced, recessive alleles are increasingly found in homozygous condition due to drift and inbreeding and become more prone to selection. Particularly at slow rates of drift and inbreeding, selection will be more effective in purging such alleles, thereby reducing the amount of ID. Here we test assumptions of the efficiency of purging in relation to the inbreeding rate and the experimental conditions for four traits in D. melanogaster. We investigated the magnitude of ID for lines that were inbred to a similar level, F ≈ 0.50, reached either by three generations of full-sib mating (fast inbreeding), or by 12 consecutive generations with a small population size (slow inbreeding). This was done on two different food media. We observed significant ID for egg-to-adult viability and heat shock mortality, but only for egg-to-adult viability a significant part of the expressed inbreeding depression was effectively purged under slow inbreeding. For other traits like developmental time and starvation resistance, however, adaptation to the experimental and environmental conditions during inbreeding might affect the likelihood of purging to occur or being detected. We discuss factors that can affect the efficiency of purging and why empirical evidence for purging may be ambiguous.
Collapse
|
2
|
Chen Z, Preisser EL, Xiao R, Chen J, Li D, Jiao X. Inbreeding produces trade-offs between maternal fecundity and offspring survival in a monandrous spider. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.08.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Bos N, Pulliainen U, Sundström L, Freitak D. Starvation resistance and tissue-specific gene expression of stress-related genes in a naturally inbred ant population. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160062. [PMID: 27152219 PMCID: PMC4852642 DOI: 10.1098/rsos.160062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
Starvation is one of the most common and severe stressors in nature. Not only does it lead to death if not alleviated, it also forces the starved individual to allocate resources only to the most essential processes. This creates energetic trade-offs which can lead to many secondary challenges for the individual. These energetic trade-offs could be exacerbated in inbred individuals, which have been suggested to have a less efficient metabolism. Here, we studied the effect of inbreeding on starvation resistance in a natural population of Formica exsecta ants, with a focus on survival and tissue-specific expression of stress, metabolism and immunity-related genes. Starvation led to large tissue-specific changes in gene expression, but inbreeding had little effect on most of the genes studied. Our results illustrate the importance of studying stress responses in different tissues instead of entire organisms.
Collapse
Affiliation(s)
- Nick Bos
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Viikinaari 1, Biocenter 3, PO Box 65, Helsinki 00014, Finland
- University of Helsinki Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, J.A. Palménin tie 260, Hanko 10900, Finland
| | - Unni Pulliainen
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Viikinaari 1, Biocenter 3, PO Box 65, Helsinki 00014, Finland
- University of Helsinki Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, J.A. Palménin tie 260, Hanko 10900, Finland
| | - Liselotte Sundström
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Viikinaari 1, Biocenter 3, PO Box 65, Helsinki 00014, Finland
- University of Helsinki Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, J.A. Palménin tie 260, Hanko 10900, Finland
| | - Dalial Freitak
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Viikinaari 1, Biocenter 3, PO Box 65, Helsinki 00014, Finland
- University of Helsinki Tvärminne Zoological Station, Faculty of Biological and Environmental Sciences, J.A. Palménin tie 260, Hanko 10900, Finland
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Sciences, University of Jyväskylä, Survontie 9, Jyväskylä 40014, Finland
| |
Collapse
|
4
|
Dolphin K, Carter A. Inbreeding decreases promiscuity in Drosophila melanogasterfemales. ETHOL ECOL EVOL 2015. [DOI: 10.1080/03949370.2015.1039466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Brown K, Thorne A, Harvey M. Calliphora vicina (Diptera: Calliphoridae) pupae: a timeline of external morphological development and a new age and PMI estimation tool. Int J Legal Med 2014; 129:835-50. [PMID: 25209716 DOI: 10.1007/s00414-014-1068-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
The minimum postmortem interval (PMI(min)) is commonly estimated using calliphorid larvae, for which there are established age estimation methods based on morphological and development data. Despite the increased duration and sedentary nature of the pupal stage of the blowfly, morphological age estimation methods are poorly documented and infrequently used for PMI determination. The aim of this study was to develop a timeline of metamorphosis, focusing on the development of external morphology (within the puparium), to provide a means of age and PMI estimation for Calliphora vicina (Rob-Desvoidy) pupae. Under controlled conditions, 1,494 pupae were reared and sampled at regular time intervals. After puparium removal, observations of 23 external metamorphic developments were correlated to age in accumulated degree hours (ADH). Two age estimation methods were developed based on (1) the combination of possible age ranges observed for each characteristic and (2) regression analyses to generate age estimation equations employing all 23 characteristics observed and a subset of ten characteristics most significantly correlated with age. Blind sample analysis indicated that, using the combination of both methods, pupal age could be estimated to within ±500 ADH with 95% reliability.
Collapse
Affiliation(s)
- Katherine Brown
- Institute of Criminal Justice Studies, University of Portsmouth, Ravelin House, Museum Road, Portsmouth, PO1 2QQ, England, UK,
| | | | | |
Collapse
|
6
|
Liu X, Tu X, He H, Chen C, Xue F. Evidence for inbreeding depression and pre-copulatory, but not post copulatory inbreeding avoidance in the cabbage beetle Colaphellus bowringi. PLoS One 2014; 9:e94389. [PMID: 24718627 PMCID: PMC3981785 DOI: 10.1371/journal.pone.0094389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/14/2014] [Indexed: 11/19/2022] Open
Abstract
Inbreeding is known to have adverse effects on fitness-related traits in a range of insect species. A series of theoretical and experimental studies have suggested that polyandrous insects could avoid the cost of inbreeding via pre-copulatory mate choice and/or post-copulatory mechanisms. We looked for evidence of pre-copulatory inbreeding avoidance using female mate preference trials, in which females were given the choice of mating with either of two males, a sibling and a non-sibling. We also tested for evidence of post-copulatory inbreeding avoidance by conducting double mating experiments, in which four sibling females were mated with two males sequentially, either two siblings, two non-siblings or a sibling and a non-sibling in either order. We identified substantial inbreeding depression: offspring of females mated to full siblings had lower hatching success, slower development time from egg to adult, lower survival of larval and pupal stages, and lower adult body mass than the offspring of females mated to non-sibling males. We also found evidence of pre-copulatory inbreeding avoidance, as females preferred to mate with non-sibling males. However, we did not find any evidence of post-copulatory inbreeding avoidance: egg hatching success of females mating to both sibling and non-sibling males were consistent with sperm being used without bias in relation to mate relatedness. Our results suggest that this cabbage beetle has evolved a pre-copulatory mechanism to avoid matings between close relative, but that polyandry is apparently not an inbreeding avoidance mechanism in C. bowringi.
Collapse
Affiliation(s)
- XingPing Liu
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - XiaoYun Tu
- Life and Sciences College, Jiangxi Normal University, Nanchang, Jiangxi Province, China
| | - HaiMin He
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - Chao Chen
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
| | - FangSen Xue
- Institute of Entomology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China
- * E-mail:
| |
Collapse
|
7
|
The Deleterious Effects of High Inbreeding on Male Drosophila melanogaster Attractiveness are Observed Under Competitive but not Under Non-competitive Conditions. Behav Genet 2014; 44:144-54. [DOI: 10.1007/s10519-013-9639-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 12/24/2013] [Indexed: 01/22/2023]
|
8
|
Abstract
Natural selection defined by differential survival and reproduction of individuals in populations is influenced by genetic, developmental, and environmental factors operating at every age and stage in human life history: generation of gametes, conception, birth, maturation, reproduction, senescence, and death. Biological systems are built upon a hierarchical organization nesting subcellular organelles, cells, tissues, and organs within individuals, individuals within families, and families within populations, and the latter among other populations. Natural selection often acts simultaneously at more than one level of biological organization and on specific traits, which we define as multilevel selection. Under this model, the individual is a fundamental unit of biological organization and also of selection, imbedded in a larger evolutionary context, just as it is a unit of medical intervention imbedded in larger biological, cultural, and environmental contexts. Here, we view human health and life span as necessary consequences of natural selection, operating at all levels and phases of biological hierarchy in human life history as well as in sociological and environmental milieu. An understanding of the spectrum of opportunities for natural selection will help us develop novel approaches to improving healthy life span through specific and global interventions that simultaneously focus on multiple levels of biological organization. Indeed, many opportunities exist to apply multilevel selection models employed in evolutionary biology and biodemography to improving human health at all hierarchical levels. Multilevel selection perspective provides a rational theoretical foundation for a synthesis of medicine and evolution that could lead to discovering effective predictive, preventive, palliative, potentially curative, and individualized approaches in medicine and in global health programs.
Collapse
|
9
|
Reciprocal cross differences in Drosophila melanogaster longevity: an evidence for non-genomic effects in heterosis phenomenon? Biogerontology 2013; 14:153-63. [PMID: 23529279 DOI: 10.1007/s10522-013-9419-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/21/2013] [Indexed: 12/20/2022]
Abstract
Reciprocal cross effects (i.e., differences between reciprocal hybrids that are developed by reversing the strains from which the dam and the sire are taken) are commonly used as a measure of sex-linkage or maternal effects. However, the papers reporting parental effects on life span of experimental animals are scarce. In order to investigate the potential of parent-of-origin effects for the longevity of hybrids, we determined the life spans of the inbred lines of Drosophila melanogaster [Oregon-R (OR), Canton-S (CS) and Uman (Um)] that differ significantly in longevity, as well as the life span of the progeny from the reciprocal crosses among them. The hybridization caused the increase in both flies' mean and maximum life span mainly shifting the survival curves upward proportionally at all ages. This resulted in the reduction in the Gompertz intercept (frailty) whereas the Gompertz slope (the rate of aging) was predominantly unchanged. Better-parent heterosis was observed in hybrids between OR and Um inbred lines and the extent of heterosis was more pronounced in hybrids between CS and Um inbred lines if long-lived parent was used as the female parent, and short-lived parent was used as the male parent in the crossing scheme. Such discrepancy in life span between reciprocal crosses may indicate that non-chromosomal factors are significantly contributing to a heterotic response. Our data are in line with the previous reports suggesting the involvement of non-genomic factors, particularly epigenetic events attributed to hybridization, in the manifestation of heterosis.
Collapse
|
10
|
Dubey S, Sinsch U, Dehling MJ, Chevalley M, Shine R. Population demography of an endangered lizard, the Blue Mountains Water Skink. BMC Ecol 2013; 13:4. [PMID: 23402634 PMCID: PMC3621382 DOI: 10.1186/1472-6785-13-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Information on the age structure within populations of an endangered species can facilitate effective management. The Blue Mountains Water Skink (Eulamprus leuraensis) is a viviparous scincid lizard that is restricted to < 40 isolated montane swamps in south-eastern Australia. We used skeletochronology of phalanges (corroborated by mark-recapture data) to estimate ages of 222 individuals from 13 populations. RESULTS These lizards grow rapidly, from neonatal size (30 mm snout-vent length) to adult size (about 70 mm SVL) within two to three years. Fecundity is low (mean 2.9 offspring per litter) and is affected by maternal body length and age. Offspring quality may decline with maternal age, based upon captive-born neonates (older females gave birth to slower offspring). In contrast to its broadly sympatric (and abundant) congener E. tympanum, E. leuraensis is short-lived (maximum 6 years, vs 15 years for E. tympanum). Litter size and offspring size are similar in the two species, but female E. leuraensis reproduce annually whereas many E. tympanum produce litters biennially. Thus, a low survival rate (rather than delayed maturation or low annual fecundity) is the key reason why E. leuraensis is endangered. Our 13 populations exhibited similar growth rates and population age structures despite substantial variation in elevation, geographic location and swamp size. However, larger populations (based on a genetic estimate of effective population size) contained older lizards, and thus a wider variance in ages. CONCLUSION Our study suggests that low adult survival rates, as well as specialisation on a rare and fragmented habitat type (montane swamps) contribute to the endangered status of the Blue Mountains Water Skink.
Collapse
Affiliation(s)
- Sylvain Dubey
- University of Lausanne, Department of Ecology and Evolution, Biophore Bld, Lausanne, 1015, Switzerland.
| | | | | | | | | |
Collapse
|