1
|
Shuoker B, Pichler MJ, Jin C, Sakanaka H, Wu H, Gascueña AM, Liu J, Nielsen TS, Holgersson J, Nordberg Karlsson E, Juge N, Meier S, Morth JP, Karlsson NG, Abou Hachem M. Sialidases and fucosidases of Akkermansia muciniphila are crucial for growth on mucin and nutrient sharing with mucus-associated gut bacteria. Nat Commun 2023; 14:1833. [PMID: 37005422 PMCID: PMC10067855 DOI: 10.1038/s41467-023-37533-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/21/2023] [Indexed: 04/04/2023] Open
Abstract
The mucolytic human gut microbiota specialist Akkermansia muciniphila is proposed to boost mucin-secretion by the host, thereby being a key player in mucus turnover. Mucin glycan utilization requires the removal of protective caps, notably fucose and sialic acid, but the enzymatic details of this process remain largely unknown. Here, we describe the specificities of ten A. muciniphila glycoside hydrolases, which collectively remove all known sialyl and fucosyl mucin caps including those on double-sulfated epitopes. Structural analyses revealed an unprecedented fucosidase modular arrangement and explained the sialyl T-antigen specificity of a sialidase of a previously unknown family. Cell-attached sialidases and fucosidases displayed mucin-binding and their inhibition abolished growth of A. muciniphila on mucin. Remarkably, neither the sialic acid nor fucose contributed to A. muciniphila growth, but instead promoted butyrate production by co-cultured Clostridia. This study brings unprecedented mechanistic insight into the initiation of mucin O-glycan degradation by A. muciniphila and nutrient sharing between mucus-associated bacteria.
Collapse
Affiliation(s)
- Bashar Shuoker
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, 2800, Denmark
- Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | - Michael J Pichler
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hiroka Sakanaka
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Haiyang Wu
- Quadram Institute Bioscience, Norwich, UK
| | | | - Jining Liu
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tine Sofie Nielsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, 2800, Denmark
| | - Jan Holgersson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Jens Preben Morth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, 2800, Denmark.
| | - Niclas G Karlsson
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maher Abou Hachem
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, 2800, Denmark.
| |
Collapse
|
2
|
Kouka T, Akase S, Sogabe I, Jin C, Karlsson NG, Aoki-Kinoshita KF. Computational Modeling of O-Linked Glycan Biosynthesis in CHO Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061766. [PMID: 35335136 PMCID: PMC8950484 DOI: 10.3390/molecules27061766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/03/2022]
Abstract
Glycan biosynthesis simulation research has progressed remarkably since 1997, when the first mathematical model for N-glycan biosynthesis was proposed. An O-glycan model has also been developed to predict O-glycan biosynthesis pathways in both forward and reverse directions. In this work, we started with a set of O-glycan profiles of CHO cells transiently transfected with various combinations of glycosyltransferases. The aim was to develop a model that encapsulated all the enzymes in the CHO transfected cell lines. Due to computational power restrictions, we were forced to focus on a smaller set of glycan profiles, where we were able to propose an optimized set of kinetics parameters for each enzyme in the model. Using this optimized model we showed that the abundance of more processed glycans could be simulated compared to observed abundance, while predicting the abundance of glycans earlier in the pathway was less accurate. The data generated show that for the accurate prediction of O-linked glycosylation, additional factors need to be incorporated into the model to better reflect the experimental conditions.
Collapse
Affiliation(s)
- Thukaa Kouka
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo 192-8577, Japan; (S.A.); (I.S.)
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
- Correspondence: (T.K.); (K.F.A.-K.)
| | - Sachiko Akase
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo 192-8577, Japan; (S.A.); (I.S.)
| | - Isami Sogabe
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo 192-8577, Japan; (S.A.); (I.S.)
| | - Chunsheng Jin
- Proteomics Core Facility at Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Niclas G. Karlsson
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, 0167 Oslo, Norway;
| | - Kiyoko F. Aoki-Kinoshita
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Tokyo 192-8577, Japan; (S.A.); (I.S.)
- Glycan & Life Systems Integration Center (GaLSIC), Soka University, Tokyo 192-8577, Japan
- Correspondence: (T.K.); (K.F.A.-K.)
| |
Collapse
|
3
|
Thomsson KA, Vitiazeva V, Mateoiu C, Jin C, Liu J, Holgersson J, Weijdegård B, Sundfeldt K, Karlsson NG. Sulfation of O-glycans on Mucin-type Proteins From Serous Ovarian Epithelial Tumors. Mol Cell Proteomics 2021; 20:100150. [PMID: 34555499 PMCID: PMC8527052 DOI: 10.1016/j.mcpro.2021.100150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
Despite sulfated O-linked glycans being abundant on ovarian cancer (OC) glycoproteins, their regulation during cancer development and involvement in cancer pathogenesis remain unexplored. We characterized O-glycans carrying sulfation on galactose residues and compared their expression with defined sulfotransferases regulated during OC development. Desialylated sulfated oligosaccharides were released from acidic glycoproteins in the cyst fluid from one patient with a benign serous cyst and one patient with serous OC. Oligosaccharides characterized by LC-MSn were identified as core 1 and core 2 O-glycans up to the size of decamers and with 1 to 4 sulfates linked to GlcNAc residues and to C-3 and/or C-6 of Gal. To study the specificity of the potential ovarian sulfotransferases involved, Gal3ST2 (Gal-3S)-, Gal3ST4 (Gal-3S)-, and CHST1 (Gal-6S)-encoding expression plasmids were transfected individually into CHO cells also expressing the P-selectin glycoprotein ligand-1/mouse immunoglobulin G2b (PSGL-1/mIg G2b) fusion protein and the human core 2 transferase (GCNT1). Characterization of the PSGL-1/mIg G2b O-glycans showed that Gal3ST2 preferentially sulfated Gal on the C-6 branch of core 2 structures and Gal3ST4 preferred Gal on the C-3 branch independently if core-1 or -2. CHST1 sulfated Gal residues on both the C-3 (core 1/2) and C-6 branches of core 2 structures. Using serous ovarian tissue micro array, Gal3ST2 was found to be decreased in tissue classified as malignant compared with tissues classified as benign or borderline, with the lowest expression in poorly differentiated malignant tissue. Neither Gal3ST4 nor CHST1 was differentially expressed in benign, borderline, or malignant tissue, and there was no correlation between expression level and differentiation stage. The data displays a complex sulfation pattern of O-glycans on OC glycoproteins and that aggressiveness of the cancer is associated with a decreased expression of the Gal3ST2 transferase. Ovarian cancer tissue contains highly sulfated O-glycoproteins. Sulfation occurs on GlcNAc (6-position) and Gal (3- and 6-position). Sulfation of Gal can be mimicked recombinantly with selected sulfotransferase. The Gal3ST2 sulfotransferase level is lower in malignant cancer compared with benign.
Collapse
Affiliation(s)
- Kristina A Thomsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Varvara Vitiazeva
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Constantina Mateoiu
- Department of Clinical Pathology, Sahlgrenska University Hostpital, Gotenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jining Liu
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Holgersson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Birgitta Weijdegård
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Karin Sundfeldt
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
4
|
Jin C, Cherian RM, Liu J, Playà-Albinyana H, Galli C, Karlsson NG, Breimer ME, Holgersson J. Identification by mass spectrometry and immunoblotting of xenogeneic antigens in the N- and O-glycomes of porcine, bovine and equine heart tissues. Glycoconj J 2020; 37:485-498. [PMID: 32542517 PMCID: PMC7329767 DOI: 10.1007/s10719-020-09931-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/06/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Animal bioprosthetic heart valves (BHV) are used to replace defective valves in patients with valvular heart disease. Especially young BHV recipients may experience a structural valve deterioration caused by an immune reaction in which α-Gal and Neu5Gc are potential target antigens. The expression of these and other carbohydrate antigens in animal tissues used for production of BHV was explored. Protein lysates of porcine aortic and pulmonary valves, and porcine, bovine and equine pericardia were analyzed by Western blotting using anti-carbohydrate antibodies and lectins. N-glycans were released by PNGase F digestion and O-glycans by β-elimination. Released oligosaccharides were analyzed by liquid chromatography – tandem mass spectrometry. In total, 102 N-glycans and 40 O-glycans were identified in animal heart tissue lysates. The N- and O-glycan patterns were different between species. α-Gal and Neu5Gc were identified on both N- and O-linked glycans, N,N´-diacetyllactosamine (LacdiNAc) on N-glycans only and sulfated O-glycans. The relative amounts of α-Gal-containing N-glycans were higher in bovine compared to equine and porcine pericardia. In contrast to the restricted number of proteins carrying α-Gal and LacdiNAc, the distribution of proteins carrying Neu5Gc-determinants varied between species and between different tissues of the same species. Porcine pericardium carried the highest level of Neu5Gc-sialylated O-glycans, and bovine pericardium the highest level of Neu5Gc-sialylated N-glycans. The identified N- and O-linked glycans, some of which may be immunogenic and remain in BHVs manufactured for clinical use, could direct future genetic engineering to prevent glycan expression rendering the donor tissues less immunogenic in humans.
Collapse
Affiliation(s)
- Chunsheng Jin
- Department of Medical Biochemistry, Institute of Biomedicine Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Reeja Maria Cherian
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Jining Liu
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heribert Playà-Albinyana
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biochemistry and Biotechnology, Faculty of Chemistry, Rovira i Virgili University, Tarragona, Spain
| | - Cesare Galli
- Avantea Laboratory of Reproductive Technologies, Cremona, Italy.,Avantea Foundation, Cremona, Italy
| | - Niclas G Karlsson
- Department of Medical Biochemistry, Institute of Biomedicine Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael E Breimer
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Jan Holgersson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Breimer ME, Holgersson J. The Structural Complexity and Animal Tissue Distribution of N-Glycolylneuraminic Acid (Neu5Gc)-Terminated Glycans. Implications for Their Immunogenicity in Clinical Xenografting. Front Mol Biosci 2019; 6:57. [PMID: 31428616 PMCID: PMC6690001 DOI: 10.3389/fmolb.2019.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
N-Glycolylneuraminic acid (Neu5Gc)-terminated glycans are present in all animal cells/tissues that are already used in the clinic such as bioprosthetic heart valves (BHV) as well as in those that potentially will be xenografted in the future to overcome end stage cell/organ failure. Humans, as a species lack this antigen determinant and can react with an immune response after exposure to Neu5Gc present in these products/cells/tissues. Genetically engineered source animals lacking Neu5Gc has been generated and so has animals that in addition lack the major αGal xenoantigen. The use of cells/tissues/organs from such animals may improve the long-term performance of BHV and allow future xenografting. This review summarizes the present knowledge regarding structural complexity and tissue distribution of Neu5Gc on glycans of cells/tissue/organs already used in the clinic or intended for treatment of end stage organ failure by xenografting. In addition, we briefly discuss the role of anti-Neu5Gc antibodies in the xenorejection process and how knowledge about Neu5Gc structural complexity can be used to design novel diagnostics for anti-Neu5Gc antibody detection.
Collapse
Affiliation(s)
- Michael E Breimer
- Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Holgersson
- Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
6
|
Li SS, Ip CKM, Tang MYH, Tang MKS, Tong Y, Zhang J, Hassan AA, Mak ASC, Yung S, Chan TM, Ip PP, Lee CL, Chiu PCN, Lee LTO, Lai HC, Zeng JZ, Shum HC, Wong AST. Sialyl Lewis x-P-selectin cascade mediates tumor-mesothelial adhesion in ascitic fluid shear flow. Nat Commun 2019; 10:2406. [PMID: 31160622 PMCID: PMC6547673 DOI: 10.1038/s41467-019-10334-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
Organ-specific colonization suggests that specific cell–cell recognition is essential. Yet, very little is known about this particular interaction. Moreover, tumor cell lodgement requires binding under shear stress, but not static, conditions. Here, we successfully isolate the metastatic populations of cancer stem/tumor-initiating cells (M-CSCs). We show that the M-CSCs tether more and roll slower than the non-metastatic (NM)-CSCs, thus resulting in the preferential binding to the peritoneal mesothelium under ascitic fluid shear stress. Mechanistically, this interaction is mediated by P-selectin expressed by the peritoneal mesothelium. Insulin-like growth factor receptor-1 carrying an uncommon non-sulfated sialyl-Lewisx (sLex) epitope serves as a distinct P-selectin binding determinant. Several glycosyltransferases, particularly α1,3-fucosyltransferase with rate-limiting activity for sLex synthesis, are highly expressed in M-CSCs. Tumor xenografts and clinical samples corroborate the relevance of these findings. These data advance our understanding on the molecular regulation of peritoneal metastasis and support the therapeutic potential of targeting the sLex-P-selectin cascade. Tumor cell in the peritoneum are often exposed to shear forces generated by ascitic flow during metastasis. Here, the authors show that metastatic cancer stem cells tether more and roll slower than the non-metastatic counterparts, and that sialyl-Lewisx -P-selectin axis mediates peritoneal metastasis.
Collapse
Affiliation(s)
- Shan-Shan Li
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | - Carman K M Ip
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | - Matthew Y H Tang
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong
| | - Maggie K S Tang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | - Yin Tong
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | - Jiangwen Zhang
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | - Ayon Ahmed Hassan
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | - Abby S C Mak
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | - Susan Yung
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Tak-Mao Chan
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Philip P Ip
- Department of Pathology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Cheuk Lun Lee
- Department of Obstetrics and Gynecology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Philip C N Chiu
- Department of Obstetrics and Gynecology, University of Hong Kong, Queen Mary Hospital, Pokfulam, Hong Kong
| | - Leo Tsz On Lee
- Centre of Reproduction Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Hung-Cheng Lai
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 23561, Taiwan.,Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, Taipei, 23561, Taiwan
| | - Jin-Zhang Zeng
- State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, University of Hong Kong, Pokfulam, Hong Kong.
| | - Alice S T Wong
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
7
|
Yamashita J, Kobayashi I, Tatematsu K, Sezutsu H, Noda K, Ishihara H. Sandwich ELISA Using a Mouse/Human Chimeric CSLEX-1 Antibody. Clin Chem 2016; 62:1516-1523. [PMID: 27591290 DOI: 10.1373/clinchem.2016.260968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/21/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND An assay using a mouse antisialyl Lewis X (sLeX) antibody (CSLEX-1) is used clinically for screening and monitoring patients with breast cancer in Japan. However, the IgM isoform of CSLEX-1 is not preferred for the assay because the bulkiness of IgM generally causes poor accessibility to the antigen. To solve this problem, we developed an antisLeX mouse/human chimeric IgG antibody, CH-CSLEX-1, using transgenic silkworms. The performance of a homologous sandwich ELISA of CH-CSLEX1 was then evaluated. METHODS To generate CH-CSLEX-1, we used a GAL4/UAS binary gene expression system in transgenic silkworms. The reactivities of CSLEX-1 and CH-CSLEX-1 were determined in a Biacore analysis. To confirm antigen specificity, 3 antigens [sLeX, sLeA, and Lewis Y (LeY)] were used. RESULTS CH-CSLEX-1 formed correctly as an IgG class of immunoglobulin molecule with an isoelectric point close to the predicted value. The best combination for capturing and probing in a sandwich ELISA was determined as a homologous combination of CH-CSLEX-1. The CH-CSLEX-1 assay specifically detected sLeX, but not sLeA and LeY. A correlation analysis with 107 human samples showed good concordance between the conventional CSLEX-1 assay (homologous sandwich ELISA using CSLEX-1) and the CH-CSLEX-1 assay (r = 0.98). Moreover, the CH-CSLEX-1 assay was not affected by either human antimouse IgG antibodies (HAMA IgG) or HAMA IgM. CONCLUSIONS The mouse/human chimeric antibody CH-CSLEX-1 allowed the establishment of a highly specific sandwich ELISA for sLeX that was not affected by HAMA.
Collapse
Affiliation(s)
- J Yamashita
- R&D Department, Nittobo Medical Co., Ltd., Koriyama, Japan
| | - I Kobayashi
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | - K Tatematsu
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | - H Sezutsu
- Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences, Ibaraki, Japan
| | - K Noda
- R&D Department, Nittobo Medical Co., Ltd., Koriyama, Japan
| | - H Ishihara
- R&D Department, Nittobo Medical Co., Ltd., Koriyama, Japan;
| |
Collapse
|
8
|
A Panel of Recombinant Mucins Carrying a Repertoire of Sialylated O-Glycans Based on Different Core Chains for Studies of Glycan Binding Proteins. Biomolecules 2015; 5:1810-31. [PMID: 26274979 PMCID: PMC4598776 DOI: 10.3390/biom5031810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 01/26/2023] Open
Abstract
Sialylated glycans serve as key elements of receptors for many viruses, bacteria, and bacterial toxins. The microbial recognition and their binding specificity can be affected by the linkage of the terminal sugar residue, types of underlying sugar chains, and the nature of the entire glycoconjugate. Owing to the pathobiological significance of sialylated glycans, we have engineered Chinese hamster ovary (CHO) cells to secrete mucin-type immunoglobulin-fused proteins carrying terminal α2,3- or α2,6-linked sialic acid on defined O-glycan core saccharide chains. Besides stably expressing P-selectin glycoprotein ligand-1/mouse immunoglobulin G2b cDNA (PSGL-1/mIgG2b), CHO cells were stably transfected with plasmids encoding glycosyltransferases to synthesize core 2 (GCNT1), core 3 (B3GNT6), core 4 (GCNT1 and B3GNT6), or extended core 1 (B3GNT3) chains with or without the type 1 chain-encoding enzyme B3GALT5 and ST6GAL1. Western blot and liquid chromatography-mass spectrometry analysis confirmed the presence of core 1, 2, 3, 4, and extended core 1 chains carrying either type 1 (Galb3GlcNAc) or type 2 (Galb4GlcNAc) outer chains with or without α2,6-linked sialic acids. This panel of recombinant mucins carrying a repertoire of sialylated O-glycans will be important tools in studies aiming at determining the fine O-glycan binding specificity of sialic acid-specific microbial adhesins and mammalian lectins.
Collapse
|
9
|
Magalhães A, Marcos-Pinto R, Nairn AV, Dela Rosa M, Ferreira RM, Junqueira-Neto S, Freitas D, Gomes J, Oliveira P, Santos MR, Marcos NT, Xiaogang W, Figueiredo C, Oliveira C, Dinis-Ribeiro M, Carneiro F, Moremen KW, David L, Reis CA. Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1928-39. [PMID: 26144047 DOI: 10.1016/j.bbadis.2015.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori exploits host glycoconjugates to colonize the gastric niche. Infection can persist for decades promoting chronic inflammation, and in a subset of individuals lesions can silently progress to cancer. This study shows that H. pylori chronic infection and gastric tissue inflammation result in a remodeling of the gastric glycophenotype with increased expression of sialyl-Lewis a/x antigens due to transcriptional up-regulation of the B3GNT5, B3GALT5, and FUT3 genes. We observed that H. pylori infected individuals present a marked gastric local pro-inflammatory signature with significantly higher TNF-α levels and demonstrated that TNF-induced activation of the NF-kappaB pathway results in B3GNT5 transcriptional up-regulation. Furthermore, we show that this gastric glycosylation shift, characterized by increased sialylation patterns, favors SabA-mediated H. pylori attachment to human inflamed gastric mucosa. This study provides novel clinically relevant insights into the regulatory mechanisms underlying H. pylori modulation of host glycosylation machinery, and phenotypic alterations crucial for life-long infection. Moreover, the biosynthetic pathways here identified as responsible for gastric mucosa increased sialylation, in response to H. pylori infection, can be exploited as drug targets for hindering bacteria adhesion and counteract the infection chronicity.
Collapse
Affiliation(s)
- Ana Magalhães
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Ricardo Marcos-Pinto
- Centro Hospitalar do Porto (CHP), Gastroenterology Department, Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal; Medical Faculty, University of Porto, Portugal
| | - Alison V Nairn
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Mitche Dela Rosa
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Rui M Ferreira
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Susana Junqueira-Neto
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Daniela Freitas
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Joana Gomes
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Patrícia Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Marta R Santos
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal
| | - Nuno T Marcos
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Section of Health Sciences, University of Aveiro, Portugal
| | - Wen Xiaogang
- Department of Pathology, Centro Hospitalar São João, Porto, Portugal; Centro Hospitalar Vila Nova de Gaia/Espinho, Portugal
| | - Céu Figueiredo
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Medical Faculty, University of Porto, Portugal
| | - Carla Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Medical Faculty, University of Porto, Portugal
| | - Mário Dinis-Ribeiro
- Medical Faculty, University of Porto, Portugal; Gastroenterology Department, IPO Porto, Portugal; CIDES/CINTESIS, University of Porto, Portugal
| | - Fátima Carneiro
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Medical Faculty, University of Porto, Portugal; Department of Pathology, Centro Hospitalar São João, Porto, Portugal
| | - Kelley W Moremen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Leonor David
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Medical Faculty, University of Porto, Portugal
| | - Celso A Reis
- Institute for Research and Innovation in Health (i3S), University of Porto, Portugal; Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Portugal; Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal; Medical Faculty, University of Porto, Portugal.
| |
Collapse
|
10
|
Liu J, Jin C, Cherian RM, Karlsson NG, Holgersson J. O-glycan repertoires on a mucin-type reporter protein expressed in CHO cell pools transiently transfected with O-glycan core enzyme cDNAs. J Biotechnol 2015; 199:77-89. [PMID: 25722186 DOI: 10.1016/j.jbiotec.2015.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/05/2015] [Accepted: 02/09/2015] [Indexed: 02/07/2023]
Abstract
Glyco-engineering of host cells is used to increase efficacy, decrease immunogenicity and increase circulatory half-lives of protein biopharmaceuticals. The effect of transiently expressed O-glycan core chain glycosyltransferases on O-glycan biosynthesis pathways in CHO cells is reported. Liquid chromatography-mass spectrometry and Western blotting were used to map the O-glycome of a mucin-type fusion protein transiently co-transfected with β1,3-N-acetylglucosaminyltransferase 3 (extended C1 β3GnT3), core 2 β1,6-N-acetylglucosaminyltransferase I (C2 β3GnT1) or core 3 β1,3-N-acetylglucosaminyltransferase 6 (C3 β3GnT6) in CHO cells. Extended core 1 (GlcNAcβ1,3Galβ1,3GalNAc) and core 3 (GlcNAcβ1,3GalNAc), and increased expression of core 2 [Galβ1,3(GlcNAcβ1,6)GalNAc], O-glycans were generated on P-selectin glycoprotein ligand-1/mouse IgG2b (PSGL1/mIgG2b). Endogenous poly-N-acetyllactosamine (poly-LacNAc) synthase elongated extended core 1 and core 3 generating O-glycans with up to five LacNAc repeats. Low amounts of core 3 O-glycans appeared upon extended C1 β3GnT3 expression. The α2,6-sialylated type 2 chain was detected upon co-transfection with the β-galactoside α2,6-sialyltransferase I. N-acetylglucosamine-6-O-sulfotransferase 2 transferred sulfate to carbon 6 of GlcNAc in poly-LacNAc sequences. CHO cells with its known O-glycan repertoire can be used to express recombinant mucin-type proteins together with selected glycosyltransferases in order to recreate carbohydrate determinants on defined O-glycan chains. They will become important tools for assessing the core chain-dependent binding activity of carbohydrate-binding proteins.
Collapse
Affiliation(s)
- Jining Liu
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
| | - Reeja Maria Cherian
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Niclas G Karlsson
- Department of Medical Biochemistry, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Jan Holgersson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| |
Collapse
|
11
|
Gaunitz S, Liu J, Nilsson A, Karlsson N, Holgersson J. Avian influenza H5 hemagglutinin binds with high avidity to sialic acid on different O-linked core structures on mucin-type fusion proteins. Glycoconj J 2014; 31:145-59. [PMID: 24233973 DOI: 10.1007/s10719-013-9503-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/15/2022]
Abstract
The interaction between P-selectin glycoprotein ligand-1/mouse IgG2b (PSGL-1/mIgG(2b)) fusion protein carrying multiple copies of the influenza hemagglutinin receptor Siaα2-3Gal on different O-glycan chains and recombinant human influenza H5N1 A/Vietnam/1203/04 hemagglutinin was investigated with a Biacore biosensor. The fusion protein was produced by stable cell lines in large scale cultures and purified with affinity- and gel filtration chromatography. TheC-P55 and 293-P cell lines were established by transfecting the Chinese hamster ovary (CHO)-K1 and Human embryonic kidney (HEK)-293 cell lines with plasmids encoding the PSGL-1/mIgG(2b) fusion protein, while the C-PSLex cell line was engineered by transfecting CHO-K1 cells with the plasmids encoding the core 2 β1,6GnT-I and FUT-VII glycosyltransferases. Glycosylation was characterized by lectin Western blotting of the proteins and liquid chromatography - mass spectrometry of released non-derivatized O-glycans. Biacore experiments revealed that PSGL-1/mIgG(2b) is a good binding partner of H5. The binding curves displayed a slow dissociation indicating a multivalent binding. The H5 hemagglutinin binds with similar strength to PSGL-1/mIgG(2b) carrying mostly sialylated core 1 (clone C-P55), a mix of sialylated core 1 and sialylated lactosamine (clone 293-P) or mainly sialylated lactosamine (clone C-PSLex) O-glycans, indicating that this hemagglutinin is unable to discriminate between these structures.The potential use of the large, flexible PSGL-1/mIgG(2b) mucin-type fusion protein carrying Siaα2-3Gal as a multivalent inhibitor of influenza virus is discussed.
Collapse
|
12
|
Lindberg L, Liu J, Gaunitz S, Nilsson A, Johansson T, Karlsson NG, Holgersson J. Mucin-type fusion proteins with blood group A or B determinants on defined O-glycan core chains produced in glycoengineered Chinese hamster ovary cells and their use as immunoaffinity matrices. Glycobiology 2013; 23:720-35. [DOI: 10.1093/glycob/cwt011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
13
|
Mass spectrometric analysis of O-linked oligosaccharides from various recombinant expression systems. Methods Mol Biol 2013; 988:145-67. [PMID: 23475718 DOI: 10.1007/978-1-62703-327-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Analysis of O-linked glycosylation is one of the main challenges during structural validation of recombinant glycoproteins. With methods available for N-linked glycosylation in regard to oligosaccharide analysis as well as glycopeptide mapping, there are still challenges for O-linked glycan analysis. Here, we present mass spectrometric methodology for O-linked oligosaccharides released by reductive β-elimination. Using LC-MS and LC-MS(2) with graphitized carbon columns, oligosaccharides are analyzed without derivatization. This approach provides a high-throughput method for screening during clonal selection, as well as product structure verification, without impairing sequencing ability. The protocols are exemplified by analysis of glycoproteins from mammalian cell cultures (CHO cells) as well as insect cells and yeast. The data shows that the method can be successfully applied to both neutral and acidic O-linked oligosaccharides, where sialic acid, hexuronic acid, and sulfate are common substituents. Further characterization of O-glycans can be achieved using permethylation. Permethylation of O-linked oligosaccharides followed by direct infusion into the mass spectrometer provide information about oligosaccharide composition, and subsequent MS (n) experiments can be carried out to elucidate oligosaccharide structure including linkage information and sequence.
Collapse
|
14
|
Lindberg L, Liu J, Holgersson J. Engineering of therapeutic and diagnostic O-glycans on recombinant mucin-type immunoglobulin fusion proteins expressed in CHO cells. Methods Mol Biol 2013; 988:3-17. [PMID: 23475710 DOI: 10.1007/978-1-62703-327-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metabolic engineering of mammalian cells for optimized glycosylation is usually done to improve activity and the pharmacokinetic features of glycoprotein therapeutics. The field is mainly focused around engineering of N-glycans. We have created a platform in which recombinant mucin-type immunoglobulin fusion proteins are used as scaffolds for multivalent expression of O-glycans with diagnostic or therapeutic potential. The methods used to make stable CHO cell lines secreting a mucin-type fusion protein with blood group A or B determinants following expression of up to five different cDNAs are described.
Collapse
|
15
|
Bojarová P, Rosencrantz RR, Elling L, Křen V. Enzymatic glycosylation of multivalent scaffolds. Chem Soc Rev 2013; 42:4774-97. [DOI: 10.1039/c2cs35395d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Nordén R, Nyström K, Aurelius J, Brisslert M, Olofsson S. Virus-induced appearance of the selectin ligand sLeX in herpes simplex virus type 1-infected T-cells: Involvement of host and viral factors. Glycobiology 2012; 23:310-21. [DOI: 10.1093/glycob/cws160] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
17
|
Lindberg L, Theinert K, Liu J, Holgersson J. Adsorption of chain type-specific ABO antibodies on Sepharose-linked A and B tetrasaccharides. Transfusion 2012; 52:2356-67. [PMID: 22587667 DOI: 10.1111/j.1537-2995.2012.03706.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Antigen-specific removal of anti-A and anti-B on immunoadsorption columns carrying the blood group A and B trisaccharides is one important component of some protocols used in ABO-incompatible organ transplantation. Because ABO antibodies exist requiring parts of the core saccharide chain for binding, the anti-A and -B-binding capacity of individual and combined, Sepharose-linked Types 1 through 4 A and B tetrasaccharides with that of the A and B trisaccharides was compared. STUDY DESIGN AND METHODS Sepharose-linked A and B tri- and tetrasaccharides were used to adsorb anti-A and -B from pooled blood group O serum. Remaining chain type-specific anti-A and -B were detected and quantified in enzyme-linked immunosorbent assays using wells coated with neoglycoproteins or recombinant mucins carrying A and B determinants on defined core saccharide chains. RESULTS Significantly more anti-A Type 3- and 4-specific immunoglobulin (Ig)G remained after adsorption on the A trisaccharide and the A Type 1 and A Type 2 tetrasaccharide than after adsorption on the A Types 3 and 4 tetrasaccharides. Selective adsorption of chain type-specific IgG anti-B was detected on Sepharose-linked B tetrasaccharides. In contrast, there were no chain type-specific IgM anti-A or -B. A combination of the A or B tetrasaccharides adsorbed a larger fraction of the IgG anti-A and -B repertoires than the corresponding trisaccharides. CONCLUSION There are chain type-specific anti-A and anti-B IgG, and an adsorber based on a combination of Types 1 through 4 A or B tetrasaccharides will be a more efficient adsorber than an adsorber based on the A or B trisaccharides.
Collapse
Affiliation(s)
- Linda Lindberg
- AbSorber AB, Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | | |
Collapse
|
18
|
Two opposing roles of O-glycans in tumor metastasis. Trends Mol Med 2012; 18:224-32. [PMID: 22425488 DOI: 10.1016/j.molmed.2012.02.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/03/2012] [Accepted: 02/13/2012] [Indexed: 01/01/2023]
Abstract
Despite the high prevalence of metastatic cancers and the poor outcome for patients, the processes of tumor metastasis still remain poorly understood. It has been shown that cell-surface carbohydrates attached to proteins through the amino acids serine or threonine (O-glycans) are involved in tumor metastasis, with the roles of O-glycans varying depending on their structure. Core2 O-glycans allow tumor cells to evade natural killer (NK) cells of the immune system and survive longer in the circulatory system, thereby promoting tumor metastasis. Core3 O-glycans or O-mannosyl glycans suppress tumor formation and metastasis by modulating integrin-mediated signaling. Here, we highlight recent advances in our understanding of the detailed molecular mechanisms by which O-glycans promote or suppress tumor metastasis.
Collapse
|
19
|
Lindberg L, Johansson SM, Liu J, Grufman P, Holgersson J. Is there a clinical need for a diagnostic test allowing detection of chain type-specific anti-A and anti-B? Transfusion 2010; 51:494-503. [PMID: 20849404 DOI: 10.1111/j.1537-2995.2010.02870.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hemagglutination for detection and semiquantification of ABO antibodies is associated with large center-to-center variations and poor reproducibility. Because acceptance for transplantation and diagnosis of rejection in ABO-incompatible transplantation rely on the levels and specificity of ABO antibodies, reproducible tests that allow their detection and specificity determination are required. STUDY DESIGN AND METHODS The level of chain type-specific anti-A and anti-B were analyzed in the sera of 44 healthy individuals of known ABO blood group using an enzyme-linked immunosorbent assay (ELISA) with polyacrylamide (PAA) conjugates of blood group A and B trisaccharides or Type 2 chain A and B tetrasaccharides. Selected sera were further analyzed by hemagglutination and in an ELISA with Types 1 to 4 chain A or B neoglycolipids (NGL) as antigens. RESULTS Immunoglobulin (Ig)G anti-A and anti-B levels were higher (p ≤ 0.05) in blood group O than in B and A individuals. More IgM anti-A and anti-B cross-reactivity was detected in AB serum on PAA-conjugated A and B trisaccharides than on the tetrasaccharides. One of 11 blood group B and two of 12 A individuals had IgG antibodies binding the tetrasaccharide despite lack of, or very low reactivity with, the trisaccharides. IgG antibodies preferring the A and B Type 2 tetrasaccharides were of the IgG2 subclass. The NGL ELISA further supported the presence of chain type-specific anti-A and -B antibodies among nonsensitized, healthy individuals. CONCLUSION An ELISA with structurally defined ABH antigens will allow the antibody class and fine specificity of ABO antibodies to be determined, which may improve risk assessment in ABO-incompatible transplantation.
Collapse
Affiliation(s)
- Linda Lindberg
- AbSorber AB and the Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
20
|
Nordén R, Nyström K, Olofsson S. Activation of host antiviral RNA-sensing factors necessary for herpes simplex virus type 1-activated transcription of host cell fucosyltransferase genes FUT3, FUT5, and FUT6 and subsequent expression of sLe(x) in virus-infected cells. Glycobiology 2009; 19:776-88. [PMID: 19349624 DOI: 10.1093/glycob/cwp050] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) induces expression of a selectin receptor, the carbohydrate epitope sialyl Lewis X (sLe(x)), at the surface of infected cells. The molecular background to this phenomenon is that a viral immediate early RNA interacts with as yet unidentified host factors, eventually resulting in transcription of three dormant host fucosyltransferase genes (FUT3, FUT5, and FUT6), whose gene products are rate-limiting for synthesis of sLe(x). The aim of the present study was to define the immediate targets for the viral RNA in this process. We found that the Protein Kinase R (PKR) inhibitors 2-aminopurine (2-AP) and C16 inhibited FUT3, FUT5, and FUT6 expression as well as HSV-1-induced expression of sLe(x), indicating a primary role of PKR as a viral RNA target. The PKR-dependent activation of the FUT genes seemed neither to involve PKR effects on translation nor to involve NF-kappaB- or JNK-dependent activation. IMD-0354, known as an inhibitor of the NF-kappaB-activating factor IKK-2, induced FUT transcription via a novel IKK-2-independent mechanism, irrespective of whether the cells were virus-infected or not. Altogether, the results suggested that PKR is the primary target for HSV-1 early RNA during induction of FUT3, FUT5, and FUT6, and that the subsequent steps in the transcriptional activation of these host genes involve a hitherto unknown IMD-0354, yet IKK-2-independent, pathway.
Collapse
Affiliation(s)
- Rickard Nordén
- Department of Virology, University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|