1
|
Gurav MJ, Manasa J, Sanji AS, Megalamani PH, Chachadi VB. Lectin-glycan interactions: a comprehensive cataloguing of cancer-associated glycans for biorecognition and bio-alteration: a review. Glycoconj J 2024; 41:301-322. [PMID: 39218819 DOI: 10.1007/s10719-024-10161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review meticulously compiles data on an array of lectins and their interactions with different cancer types through specific glycans. Crucially, it establishes the link between aberrant glycosylation and cancer types. This repository of lectin-defined glycan signatures, assumes paramount importance in the realm of cancer and its dynamic nature. Cancer, known for its remarkable heterogeneity and individualized behaviour, can be better understood through these glycan signatures. The current review discusses the important lectins and their carbohydrate specificities, especially recognizing glycans of cancer origin. The review also addresses the key aspects of differentially expressed glycans on normal and cancerous cell surfaces. Specific cancer types highlighted in this review include breast cancer, colon cancer, glioblastoma, cervical cancer, lung cancer, liver cancer, and leukaemia. The glycan profiles unveiled through this review hold the key to tailor-made treatment and precise diagnostics. It opens up avenues to explore the potential of targeting glycosyltransferases and glycosidases linked with cancer advancement and metastasis. Armed with knowledge about specific glycan expressions, researchers can design targeted therapies to modulate glycan profiles, potentially hampering the advance of this relentless disease.
Collapse
Affiliation(s)
- Maruti J Gurav
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - J Manasa
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Ashwini S Sanji
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Prasanna H Megalamani
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Vishwanath B Chachadi
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India.
| |
Collapse
|
2
|
Soares J, Eiras M, Ferreira D, Santos DAR, Relvas-Santos M, Santos B, Gonçalves M, Ferreira E, Vieira R, Afonso LP, Santos LL, Dinis-Ribeiro M, Lima L, Ferreira JA. Stool Glycoproteomics Signatures of Pre-Cancerous Lesions and Colorectal Cancer. Int J Mol Sci 2024; 25:3722. [PMID: 38612533 PMCID: PMC11012158 DOI: 10.3390/ijms25073722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Colorectal cancer (CRC) screening relies primarily on stool analysis to identify occult blood. However, its sensitivity for detecting precancerous lesions is limited, requiring the development of new tools to improve CRC screening. Carcinogenesis involves significant alterations in mucosal epithelium glycocalyx that decisively contribute to disease progression. Building on this knowledge, we examined patient series comprehending premalignant lesions, colorectal tumors, and healthy controls for the T-antigen-a short-chain O-glycosylation of proteins considered a surrogate marker of malignancy in multiple solid cancers. We found the T-antigen in the secretions of dysplastic lesions as well as in cancer. In CRC, T-antigen expression was associated with the presence of distant metastases. In parallel, we analyzed a broad number of stools from individuals who underwent colonoscopy, which showed high T expressions in high-grade dysplasia and carcinomas. Employing mass spectrometry-based lectin-affinity enrichment, we identified a total of 262 proteins, 67% of which potentially exhibited altered glycosylation patterns associated with cancer and advanced pre-cancerous lesions. Also, we found that the stool (glyco)proteome of pre-cancerous lesions is enriched for protein species involved in key biological processes linked to humoral and innate immune responses. This study offers a thorough analysis of the stool glycoproteome, laying the groundwork for harnessing glycosylation alterations to improve non-invasive cancer detection.
Collapse
Affiliation(s)
- Janine Soares
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Eiras
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Dylan Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Daniela A. R. Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine (FMUP), University of Porto, 4200-072 Porto, Portugal;
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- REQUIMTE-LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Beatriz Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Martina Gonçalves
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - Renata Vieira
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal;
| | - Luís Pedro Afonso
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal;
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- FF-I3ID, University Fernando Pessoa, 4249-004 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto (IPO-Porto), 4200-072 Porto, Portugal
| | - Mário Dinis-Ribeiro
- Faculty of Medicine (FMUP), University of Porto, 4200-072 Porto, Portugal;
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP), Rise@CI-IPOP (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal
- Department of Gastroenterology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Research Center of IPO Porto (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), 4200-072 Porto, Portugal; (J.S.); (M.E.); (D.F.); (D.A.R.S.); (M.R.-S.); (B.S.); (M.G.); (E.F.); (L.P.A.); (L.L.S.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- GlycoMatters Biotech, 4500-162 Espinho, Portugal
| |
Collapse
|
3
|
McDowell CT, Lu X, Mehta AS, Angel PM, Drake RR. Applications and continued evolution of glycan imaging mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:674-705. [PMID: 34392557 PMCID: PMC8946722 DOI: 10.1002/mas.21725] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is an important posttranslational modifier of proteins and lipid conjugates critical for the stability and function of these macromolecules. Particularly important are N-linked glycans attached to asparagine residues in proteins. N-glycans have well-defined roles in protein folding, cellular trafficking and signal transduction, and alterations to them are implicated in a variety of diseases. However, the non-template driven biosynthesis of these N-glycans leads to significant structural diversity, making it challenging to identify the most biologically and clinically relevant species using conventional analyses. Advances in mass spectrometry instrumentation and data acquisition, as well as in enzymatic and chemical sample preparation strategies, have positioned mass spectrometry approaches as powerful analytical tools for the characterization of glycosylation in health and disease. Imaging mass spectrometry expands upon these strategies by capturing the spatial component of a glycan's distribution in-situ, lending additional insight into the organization and function of these molecules. Herein we review the ongoing evolution of glycan imaging mass spectrometry beginning with widely adopted tissue imaging approaches and expanding to other matrices and sample types with potential research and clinical implications. Adaptations of these techniques, along with their applications to various states of disease, are discussed. Collectively, glycan imaging mass spectrometry analyses broaden our understanding of the biological and clinical relevance of N-glycosylation to human disease.
Collapse
Affiliation(s)
- Colin T. McDowell
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Xiaowei Lu
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Peggi M. Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| |
Collapse
|
4
|
Mohammed NBB, Antonopoulos A, Dell A, Haslam SM, Dimitroff CJ. The pleiotropic role of galectin-3 in melanoma progression: Unraveling the enigma. Adv Cancer Res 2022; 157:157-193. [PMID: 36725108 PMCID: PMC9895887 DOI: 10.1016/bs.acr.2022.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Melanoma is a highly aggressive skin cancer with poor outcomes associated with distant metastasis. Intrinsic properties of melanoma cells alongside the crosstalk between melanoma cells and surrounding microenvironment determine the tumor behavior. Galectin-3 (Gal-3), a ß-galactoside-binding lectin, has emerged as a major effector in cancer progression, including melanoma behavior. Data from melanoma models and patient studies reveal that Gal-3 expression is dysregulated, both intracellularly and extracellularly, throughout the stages of melanoma progression. This review summarizes the most recent data and hypotheses on Gal-3 and its tumor-modulating functions, highlighting its role in driving melanoma growth, invasion, and metastatic colonization. It also provides insight into potential Gal-3-targeted strategies for melanoma diagnosis and treatment.
Collapse
Affiliation(s)
- Norhan B B Mohammed
- Department of Translational Medicine, Translational Glycobiology Institute at FIU (TGIF), Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States; Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at FIU (TGIF), Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States.
| |
Collapse
|
5
|
Bindeman WE, Fingleton B. Glycosylation as a regulator of site-specific metastasis. Cancer Metastasis Rev 2022; 41:107-129. [PMID: 34967926 PMCID: PMC8930623 DOI: 10.1007/s10555-021-10015-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
Metastasis is considered to be responsible for 90% of cancer-related deaths. Although it is clinically evident that metastatic patterns vary by primary tumor type, the molecular mechanisms underlying the site-specific nature of metastasis are an area of active investigation. One mechanism that has emerged as an important player in this process is glycosylation, or the addition of sugar moieties onto protein and lipid substrates. Glycosylation is the most common post-translational modification, occurring on more than 50% of translated proteins. Many of those proteins are either secreted or expressed on the cell membrane, thereby making glycosylation an important mediator of cell-cell interactions, including tumor-microenvironment interactions. It has been recently discovered that alteration of glycosylation patterns influences cancer metastasis, both globally and in a site-specific manner. This review will summarize the current knowledge regarding the role of glycosylation in the tropism of cancer cells for several common metastatic sites, including the bone, lung, brain, and lymph nodes.
Collapse
Affiliation(s)
- Wendy E Bindeman
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Barbara Fingleton
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Tvaroška I. Glycosyltransferases as targets for therapeutic intervention in cancer and inflammation: molecular modeling insights. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Expression and Impact of C1GalT1 in Cancer Development and Progression. Cancers (Basel) 2021; 13:cancers13246305. [PMID: 34944925 PMCID: PMC8699795 DOI: 10.3390/cancers13246305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary C1GalT1 is one of the enzymes that catalyze the addition of sugar residues to proteins (protein glycosylation). It specifically controls the synthesis and formation of a special disaccharide structure Galβ1,3GalNAcα-, which occurs predominately in cancer but rarely in normal cells. Recent studies have shown that C1GalT1 is overexpressed in many common cancers including colon, breast, gastric, lung, head and neck, pancreatic, esophageal, prostate, and hepatocellular cancer. C1GalT1 overexpression is also often associated with poorer prognosis and poorer patient survival. This review summarizes our current understanding of the expression of C1GalT1 in various cancers and discusses the impact of C1GalT change on cancer cell activities in cancer development and progression. Abstract C1GalT1 (T-synthase) is one of the key glycosyltransferases in the biosynthesis of O-linked mucin-type glycans of glycoproteins. It controls the formation of Core-1 disaccharide Galβ1,3GalNAcα- (Thomsen–Friedenreich oncofetal antigen, T or TF antigen) and Core-1-associated carbohydrate structures. Recent studies have shown that C1GalT1 is overexpressed in many cancers of epithelial origin including colon, breast, gastric, head and neck, pancreatic, esophageal, prostate, and hepatocellular cancer. Overexpression of C1GalT1 is often seen to also be associated with poorer prognosis and poorer patient survival. Change of C1GalT1 expression causes glycosylation changes of many cell membrane glycoproteins including mucin proteins, growth factor receptors, adhesion molecules, and death receptors. This leads to alteration of the interactions of these cell surface molecules with their binding ligands, resulting in changes of cancer cell activity and behaviors. This review summarizes our current understanding of the expression of C1GalT1 in various cancers and discusses the impact of C1GalT change on cancer cell activities in cancer development and progression.
Collapse
|
8
|
Kadirvelraj R, Yang JY, Kim HW, Sanders JH, Moremen KW, Wood ZA. Comparison of human poly-N-acetyl-lactosamine synthase structure with GT-A fold glycosyltransferases supports a modular assembly of catalytic subsites. J Biol Chem 2021; 296:100110. [PMID: 33229435 PMCID: PMC7948508 DOI: 10.1074/jbc.ra120.015305] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/05/2023] Open
Abstract
Poly-N-acetyl-lactosamine (poly-LacNAc) structures are composed of repeating [-Galβ(1,4)-GlcNAcβ(1,3)-]n glycan extensions. They are found on both N- and O-glycoproteins and glycolipids and play an important role in development, immune function, and human disease. The majority of mammalian poly-LacNAc is synthesized by the alternating iterative action of β1,3-N-acetylglucosaminyltransferase 2 (B3GNT2) and β1,4-galactosyltransferases. B3GNT2 is in the largest mammalian glycosyltransferase family, GT31, but little is known about the structure, substrate recognition, or catalysis by family members. Here we report the structures of human B3GNT2 in complex with UDP:Mg2+ and in complex with both UDP:Mg2+ and a glycan acceptor, lacto-N-neotetraose. The B3GNT2 structure conserves the GT-A fold and the DxD motif that coordinates a Mg2+ ion for binding the UDP-GlcNAc sugar donor. The acceptor complex shows interactions with only the terminal Galβ(1,4)-GlcNAcβ(1,3)- disaccharide unit, which likely explains the specificity for both N- and O-glycan acceptors. Modeling of the UDP-GlcNAc donor supports a direct displacement inverting catalytic mechanism. Comparative structural analysis indicates that nucleotide sugar donors for GT-A fold glycosyltransferases bind in similar positions and conformations without conserving interacting residues, even for enzymes that use the same donor substrate. In contrast, the B3GNT2 acceptor binding site is consistent with prior models suggesting that the evolution of acceptor specificity involves loops inserted into the stable GT-A fold. These observations support the hypothesis that GT-A fold glycosyltransferases employ coevolving donor, acceptor, and catalytic subsite modules as templates to achieve the complex diversity of glycan linkages in biological systems.
Collapse
Affiliation(s)
- Renuka Kadirvelraj
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Hyun W Kim
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Justin H Sanders
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Kelley W Moremen
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| | - Zachary A Wood
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
9
|
Cheng L, Cao L, Wu Y, Xie W, Li J, Guan F, Tan Z. Bisecting N-Acetylglucosamine on EGFR Inhibits Malignant Phenotype of Breast Cancer via Down-Regulation of EGFR/Erk Signaling. Front Oncol 2020; 10:929. [PMID: 32612952 PMCID: PMC7308504 DOI: 10.3389/fonc.2020.00929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/12/2020] [Indexed: 12/27/2022] Open
Abstract
Glycosylation, the most prevalent and diverse post-translational modification of protein, plays crucial biological roles in many physiological and pathological events. Alteration of N-glycan has been detected during breast cancer progression. Among the specific N-glycan structures, bisecting N-Acetylglucosamine (GlcNAc) is a β1,4-linked GlcNAc attached to the core β-mannose residue, and is catalyzed by glycosyltransferase MGAT3. Bisecting GlcNAc levels were commonly dysregulated in different types of cancer. In this study, we utilized mass spectrometry and lectin microarray analysis to investigate aberrant N-glycans in breast cancer cells. Our data showed the decreased levels of bisecting GlcNAc and down-regulated expression of MGAT3 in breast cancer cells than normal epithelial cells. Using PHA-E (a plant lectin recognizing and combining bisecting GlcNAc) based enrichment coupled with nanoLC-MS/MS, we analyzed the glycoproteins bearing bisecting GlcNAc in various breast cancer cells. Among the differentially expressed glycoproteins, levels of bisecting GlcNAc on EGFR were significantly decreased in breast cancer cells, confirmed by immunostaining and immunoprecipitation. We overexpressed MGAT3 in breast cancer MDA-MB-231 cells, and overexpression of MGAT3 significantly enhanced the bisecting N-GlcNAc on EGFR and suppressed the EGFR/Erk signaling, which further resulted in the reduction of migratory ability, cell proliferation, and clonal formation. Taken together, we conclude that bisecting N-GlcNAc on EGFR inhibits malignant phenotype of breast cancer via down-regulation of EGFR/Erk signaling.
Collapse
Affiliation(s)
- Lanming Cheng
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Lin Cao
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Yurong Wu
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Wenjie Xie
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Jiaqi Li
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Zengqi Tan
- Shaanxi Provincial Key Laboratory of Biotechnology, Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
10
|
Shimada C, Xu R, Al-Alem L, Stasenko M, Spriggs DR, Rueda BR. Galectins and Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12061421. [PMID: 32486344 PMCID: PMC7352943 DOI: 10.3390/cancers12061421] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is known for its aggressive pathological features, including the capacity to undergo epithelial to mesenchymal transition, promoting angiogenesis, metastatic potential, chemoresistance, inhibiting apoptosis, immunosuppression and promoting stem-like features. Galectins, a family of glycan-binding proteins defined by a conserved carbohydrate recognition domain, can modulate many of these processes, enabling them to contribute to the pathology of ovarian cancer. Our goal herein was to review specific galectin members identified in the context of ovarian cancer, with emphasis on their association with clinical and pathological features, implied functions, diagnostic or prognostic potential and strategies being developed to disrupt their negative actions.
Collapse
Affiliation(s)
- Chisa Shimada
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Rui Xu
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Linah Al-Alem
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Stasenko
- Gynecology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York City, NY 10065, USA;
| | - David R. Spriggs
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Department of Hematology/Medical Oncology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bo R. Rueda
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.S.); (R.X.); (L.A.-A.); (D.R.S.)
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
- Correspondence:
| |
Collapse
|
11
|
Jalilian E, Xu Q, Horton L, Fotouhi A, Reddy S, Manwar R, Daveluy S, Mehregan D, Gelovani J, Avanaki K. Contrast-enhanced optical coherence tomography for melanoma detection: An in vitro study. JOURNAL OF BIOPHOTONICS 2020; 13:e201960097. [PMID: 32072773 DOI: 10.1002/jbio.201960097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Optical coherence tomography (OCT), with a high-spatial resolution (<10 microns), intermediate penetration depth (~1.5 mm) and volumetric imaging capability is a great candidate to be used as a diagnostic-assistant modality in dermatology. At this time, the accuracy of OCT for melanoma detection is lower than anticipated. In this letter, we studied for the first time, the use of a novel contrast agent consist of ultra-small nanoparticles conjugated to a melanoma biomarker to improve the accuracy of OCT for differentiation of melanoma cells from nonmelanoma cells, in vitro. We call this approach SMall nanoparticle Aggregation-enhanced Radiomics of Tumor (SMART)-OCT imaging. This initial proof of concept study is the first step toward the broad utilization of this method for high accuracy all types of tumor detection applications.
Collapse
Affiliation(s)
- Elmira Jalilian
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Qiuyun Xu
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | - Luke Horton
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
- School of Medicine, Wayne State University, Detroit, Michigan
| | - Audrey Fotouhi
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
- School of Medicine, Wayne State University, Detroit, Michigan
| | - Shriya Reddy
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | - Rayyan Manwar
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | - Steven Daveluy
- School of Medicine, Wayne State University, Detroit, Michigan
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Darius Mehregan
- School of Medicine, Wayne State University, Detroit, Michigan
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Juri Gelovani
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Kamran Avanaki
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
- School of Medicine, Wayne State University, Detroit, Michigan
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| |
Collapse
|
12
|
Dussouy C, Kishor C, Lambert A, Lamoureux C, Blanchard H, Grandjean C. Linear triazole-linked pseudo oligogalactosides as scaffolds for galectin inhibitor development. Chem Biol Drug Des 2020; 96:1123-1133. [PMID: 32220037 DOI: 10.1111/cbdd.13683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/10/2020] [Accepted: 03/14/2020] [Indexed: 11/30/2022]
Abstract
Galectins play key roles in numerous biological processes. Their mode of action depends on their localization which can be extracellular, cytoplasmic, or nuclear and is partly mediated through interactions with β-galactose containing glycans. Galectins have emerged as novel therapeutic targets notably for the treatment of inflammatory disorders and cancers. This has stimulated the design of carbohydrate-based inhibitors targeting the carbohydrate recognition domains (CRDs) of the galectins. Pursuing this approach, we reasoned that linear oligogalactosides obtained by straightforward iterative click chemistry could mimic poly-lactosamine motifs expressed at eukaryote cell surfaces which the extracellular form of galectin-3, a prominent member of the galectin family, specifically recognizes. Affinities toward galectin-3 consistently increased with the length of the representative oligogalactosides but without reaching that of oligo-lactosamines. Elucidation of the X-ray crystal structures of the galectin-3 CRD in complex with a synthesized di- and tri-galactoside confirmed that the compounds bind within the carbohydrate-binding site. The atomic structures revealed that binding interactions mainly occur with the galactose moiety at the non-reducing end, primarily with subsites C and D of the CRD, differing from oligo-lactosamine which bind more consistently across the whole groove formed by the five subsites (A-E) of the galectin-3 CRD.
Collapse
Affiliation(s)
- Christophe Dussouy
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), CNRS, UMR 6286, Université de Nantes, Nantes, France
| | - Chandan Kishor
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Annie Lambert
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), CNRS, UMR 6286, Université de Nantes, Nantes, France
| | - Clément Lamoureux
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), CNRS, UMR 6286, Université de Nantes, Nantes, France
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.,School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Cyrille Grandjean
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), CNRS, UMR 6286, Université de Nantes, Nantes, France
| |
Collapse
|
13
|
Jiang XN, Dang YF, Gong FL, Guo XL. Role and regulation mechanism of Gal-3 in non-small cell lung cancer and its potential clinical therapeutic significance. Chem Biol Interact 2019; 309:108724. [DOI: 10.1016/j.cbi.2019.108724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/23/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023]
|
14
|
Wu HR, Anwar MT, Fan CY, Low PY, Angata T, Lin CC. Expedient assembly of Oligo-LacNAcs by a sugar nucleotide regeneration system: Finding the role of tandem LacNAc and sialic acid position towards siglec binding. Eur J Med Chem 2019; 180:627-636. [PMID: 31351394 DOI: 10.1016/j.ejmech.2019.07.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 11/28/2022]
Abstract
Sialosides containing (oligo-)N-acetyllactosamine (LacNAc, Galβ(1,4)GlcNAc) as core structure are known to serve as ligands for Siglecs. However, the role of tandem inner epitope for Siglec interaction has never been reported. Herein, we report the effect of internal glycan (by length and type) on the binding affinity and describe a simple and efficient chemo-enzymatic sugar nucleotide regeneration protocol for the preparative-scale synthesis of oligo-LacNAcs by the sequential use of β1,4-galactosyltransferase (β4GalT) and β1,3-N-acetylglucosyl transferase (β3GlcNAcT). Further modification of these oligo-LacNAcs was performed in one-pot enzymatic synthesis to yield sialylated and/or fucosylated analogs. A glycan library of 23 different sialosides containing various LacNAc lengths or Lac core with natural/unnatural sialylation and/or fucosylation was synthesized. These glycans were used to fabricate a glycan microarray that was utilized to screen glycan binding preferences against five different Siglecs (2, 7, 9, 14 and 15).
Collapse
Affiliation(s)
- Hsin-Ru Wu
- Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan; Instrumentation Center of Ministry of Science and Technology at National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | | | - Chen-Yo Fan
- Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Penk Yeir Low
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing-Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
15
|
Scott DA, Casadonte R, Cardinali B, Spruill L, Mehta AS, Carli F, Simone N, Kriegsmann M, Del Mastro L, Kriegsmann J, Drake RR. Increases in Tumor N-Glycan Polylactosamines Associated with Advanced HER2-Positive and Triple-Negative Breast Cancer Tissues. Proteomics Clin Appl 2019; 13:e1800014. [PMID: 30592377 PMCID: PMC8913074 DOI: 10.1002/prca.201800014] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/11/2018] [Indexed: 01/09/2023]
Abstract
PURPOSE Using a recently developed matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) method, human breast cancer formalin-fixed paraffin-embedded (FFPE) tissue sections and tissue microarrays (TMA) are evaluated for N-linked glycan distribution in the tumor microenvironment. EXPERIMENTAL DESIGN Tissue sections representing multiple human epidermal growth factor receptor 2 (HER2) receptor-positive and triple-negative breast cancers (TNBC) in both TMA and FFPE slide format are processed for high resolution N-glycan MALDI-IMS. An additional FFPE tissue cohort of primary and metastatic breast tumors from the same donors are also evaluated. RESULTS The cumulative N-glycan MALDI-IMS analysis of breast cancer FFPE tissues and TMAs indicate the distribution of specific glycan structural classes to stromal, necrotic, and tumor regions. A series of high-mannose, branched and fucosylated glycans are detected predominantly within tumor regions. Additionally, a series of polylactosamine glycans are detected in advanced HER2+, TNBC, and metastatic breast cancer tissues. Comparison of tumor N-glycan species detected in paired primary and metastatic tissues indicate minimal changes between the two conditions. CONCLUSIONS AND CLINICAL RELEVANCE The prevalence of tumor-associated polylactosamine glycans in primary and metastatic breast cancer tissues indicates new mechanistic insights into the development and progression of breast cancers. The presence of these glycans could be targeted for therapeutic strategies and further evaluation as potential prognostic biomarkers.
Collapse
Affiliation(s)
- Danielle A. Scott
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC Proteomics Center Medical University of South Carolina Charleston, 29425, SC, USA
| | | | - Barbara Cardinali
- Department of Medical Oncology Ospedale Policlinico San Martino Genova, 16132, GE, Italy
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston, 29425, SC, USA
| | - Anand S. Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC Proteomics Center Medical University of South Carolina Charleston, 29425, SC, USA
| | - Franca Carli
- Department of Surgical Pathology Ospedale Policlinico San Martino Genova, 16132, GE, Italy
| | - Nicole Simone
- Department of Radiation Oncology Thomas Jefferson University Philadelphia, 19107, PA, USA
| | | | - Lucia Del Mastro
- Department of Internal Medicine University of Genova Genova, 16132, GE, Italy
| | - Joerg Kriegsmann
- Institute of Pathology University of Heidelberg Heidelberg, 69117, Germany
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics and MUSC Proteomics Center Medical University of South Carolina Charleston, 29425, SC, USA
| |
Collapse
|
16
|
Purification, characterization and fine sugar specificity of a N-Acetylgalactosamine specific lectin from Adenia hondala. Glycoconj J 2018; 35:511-523. [PMID: 30306293 DOI: 10.1007/s10719-018-9843-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
Plant lectins are gaining interest because of their interesting biological properties. Several Adenia species, that are being used in traditional medicine to treat many health ailments have shown presence of lectins or carbohydrate binding proteins. Here, we report the purification, characterization and biological significance of N-Acetyl galactosamine specific lectin from Adenia hondala (AHL) from Passifloraceae family. AHL was purified in a single step by affinity chromatography on asialofetuin Sepharose 4B column, characterized and its fine sugar specificity determined by glycan array analysis. AHL is human blood group non specific and also agglutinates rabbit erythrocytes. AHL is a glycoprotein with 12.5% of the carbohydrate, SDS-PAGE, MALDI-TOF-MS and ESI-MS analysis showed that AHL is a monomer of 31.6 kDa. AHL is devoid of DNase activity unlike other Ribosome inactivating proteins (RIPs). Glycan array analysis of AHL revealed its highest affinity for terminal lactosamine or polylactosamine of N- glycans, known to be over expressed in hepatocellular carcinoma and colon cancer. AHL showed strong binding to human hepatocellular carcinoma HepG2 cells with MFI of 59.1 expressing these glycans which was effectively blocked by 93.1% by asialofetuin. AHL showed dose and time dependent growth inhibitory effects on HepG2 cells with IC50 of 4.8 μg/ml. AHL can be explored for its clinical potential.
Collapse
|
17
|
Dange MC, Bhonsle HS, Godbole RK, More SK, Bane SM, Kulkarni MJ, Kalraiya RD. Mass spectrometry based identification of galectin-3 interacting proteins potentially involved in lung melanoma metastasis. MOLECULAR BIOSYSTEMS 2018; 13:2303-2309. [PMID: 28875213 DOI: 10.1039/c7mb00260b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adhesive interactions between molecules on tumor cells and those on target organs play a key role in organ specific metastasis. Poly-N-acetyl-lactosamine (polyLacNAc) substituted N-oligosaccharides on melanoma cell surface glycoproteins promote lung specific metastasis via galectin-3 by facilitating their arrest and extravasation. This study reports the identification and characterization of galectin-3 interacting proteins using a combination of galectin-3 sepharose affinity and leucoagglutinating phytohemagglutinin (L-PHA) columns. A total of 83 proteins were identified as galectin-3 interacting glycoproteins, of which 35 were constituents of the L-PHA bound fraction, suggesting that these proteins carry polyLacNAc substituted β1,6 branched N-glycans. The identities of some of these proteins, like LAMP-1, LAMP-3, basigin, embigin, and α5 and β1 Integrin, have been confirmed by western blotting, and functional relevance with respect to metastatic properties has been established.
Collapse
Affiliation(s)
- Manohar C Dange
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | | | | | | | | | | | | |
Collapse
|
18
|
Chinoy ZS, Friscourt F, Capicciotti CJ, Chiu P, Boons GJ. Chemoenzymatic Synthesis of Asymmetrical Multi-Antennary N-Glycans to Dissect Glycan-Mediated Interactions between Human Sperm and Oocytes. Chemistry 2018; 24:7970-7975. [PMID: 29603480 DOI: 10.1002/chem.201800451] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/27/2018] [Indexed: 12/15/2022]
Abstract
Complex N-glycans of glycoproteins of the zona pellucida (ZP) of human oocytes have been implicated in the binding of spermatozoa. The termini of these unusual bi-, tri-, and tetra-antennary N-glycans consist of the tetrasaccharide sialyl-Lewisx (SLex ), which was previously identified as the minimal epitope for sperm binding. We describe here the chemoenzymatic synthesis of highly complex triantennary N-glycans derived from ZP carrying SLex moieties at the C-2 and C-2' arm and a sialyl-Lewisx -Lewisx (SLex -Lex ) residue at the C-6 antenna and two closely related analogues. The compounds were examined for their ability to inhibit the interaction of human sperm to ZP. It was found that the SLex -Lex moiety is critical for inhibitory activity, whereas the other SLex moieties exerted minimal effect. Further studies with SLex -Lex and SLex showed that the extended structure is the more potent inhibitor. In addition, trivalent SLex -Lex and SLex were prepared which showed greater inhibitory activity compared to their monovalent counterparts. Our studies show that although SLex can inhibit the binding of spermatozoa, presenting this epitope in the context of a complex N-glycan results in a loss of inhibitory potential, and in this context only SLex -Lex can make productive interactions. It is not the multivalent display of SLex on a multi-antennary glycan but the presentation of multiple SLex -Lex on the various glycosylation sites of ZP that accounts for high avidity binding.
Collapse
Affiliation(s)
- Zoeisha S Chinoy
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Frédéric Friscourt
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Chantelle J Capicciotti
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Philip Chiu
- Department of Obstetrics and Gynaecology, Faculty of Medicine Building, The University of Hong Kong, Hong Kong, China
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.,Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.,Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences.,Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584, CG, Utrecht, Netherlands
| |
Collapse
|
19
|
Pearce OMT. Cancer glycan epitopes: biosynthesis, structure and function. Glycobiology 2018; 28:670-696. [DOI: 10.1093/glycob/cwy023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Oliver M T Pearce
- Centre for Cancer & Inflammation, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
20
|
Liu C, Qiu H, Lin D, Wang Z, Shi N, Tan Z, Liu J, Jiang Z, Wu S. c-Jun-dependent β3GnT8 promotes tumorigenesis and metastasis of hepatocellular carcinoma by inducing CD147 glycosylation and altering N-glycan patterns. Oncotarget 2018; 9:18327-18340. [PMID: 29719608 PMCID: PMC5915075 DOI: 10.18632/oncotarget.24192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022] Open
Abstract
β3GnT8, a key polylactosamine synthase, plays a vital role in progression of various types of human cancer. The role of β3GnT8 in hepatocellular carcinoma (HCC) and the underlying mechanisms, however, remain largely unknown. In this study, we found that β3GnT8 and polylactosamine were highly expressed in HCC tissues compared with those in adjacent paracancer tissues. Overexpression of β3GnT8 promoted while knockdown of β3GnT8 inhibited HCC cell invasion and migration in vitro. Importantly, enhanced tumorigenesis was observed in nude mice inoculated with β3GnT8-overexpressing HCC cells, suggesting that β3GnT8 is important for HCC development in vitro and in vivo. Mechanistically, β3GnT8 modulated the N-glycosylation patterns of CD147 and altered the polylactosamine structures in HCC cells by physically interacting with CD147. In addition, our data showed the c-Jun could directly bind to the promoter of β3GnT8 gene and regulate β3GnT8 expression. β3GnT8 regulated HCC cell invasion and migration in a C-Jun-dependent manner. Collectively, our study identified β3GnT8 as a novel regulator for HCC invasion and tumorigenesis. Targeting β3GnT8 may be a potential therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Chunliang Liu
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Hao Qiu
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Dandan Lin
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zerong Wang
- Department of Infectious Diseases, The Fifth People's Hospital of Suzhou, Suzhou, Jiangsu 215007, P.R. China
| | - Ning Shi
- Department of Physiology and Pharmacology, University of Georgia, Athens 30602 GA, USA
| | - Zengqi Tan
- College of Life Science, Northwest University, Xian, Shanxi 710069, P.R. China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhi Jiang
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
21
|
Ting CY, Lin YW, Wu CY, Wong CH. Design of Disaccharide Modules for a Programmable One-Pot Synthesis of Building Blocks with LacNAc Repeating Units for Asymmetric N-Glycans. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cheng-Yueh Ting
- Genomics Research Center; Academia Sinica; No. 128, Academia Road, Section 2, Nankang District Taipei 11529 Taiwan
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Rd., Daan District Taipei 106 Taiwan
| | - Yu-Wei Lin
- Genomics Research Center; Academia Sinica; No. 128, Academia Road, Section 2, Nankang District Taipei 11529 Taiwan
| | - Chung-Yi Wu
- Genomics Research Center; Academia Sinica; No. 128, Academia Road, Section 2, Nankang District Taipei 11529 Taiwan
| | - Chi-Huey Wong
- Genomics Research Center; Academia Sinica; No. 128, Academia Road, Section 2, Nankang District Taipei 11529 Taiwan
- Department of Chemistry; National Taiwan University; No. 1, Sec. 4, Roosevelt Rd., Daan District Taipei 106 Taiwan
| |
Collapse
|
22
|
Shen L, Dong X, Yu M, Luo Z, Wu S. β3GnT8 Promotes Gastric Cancer Invasion by Regulating the Glycosylation of CD147. J Cancer 2017; 8:314-322. [PMID: 28243336 PMCID: PMC5327381 DOI: 10.7150/jca.16526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
β1, 3-N-acetylglucosminyltransferase 8(β3GnT8) synthesizes a unique cabohydrate structure known as polylactosamine, and plays a vital role in progression of various human cancer types. However, its involvement in gastric cancer remains unclear. In this study, we analyzed the expression and clinical significance of β3GnT8 by Western blot in 6 paired fresh gastric cancer tissues, noncancerous tissues and immunohistochemistry on 110 paraffin-embedded slices. β3GnT8 was found to be over-expressed in gastric cancer tissues, which correlated with lymph node metastasis and TNM stage. Forced the expression of β3GnT8 promoted migration and invasion of gastric cancer cells, whereas β3GnT8 knockdown led to the opposite results. Further studies showed that the regulated β3GnT8 could convert the heterogeneous N-glycosylated forms of CD147 and change the polylactosamine structures carried on CD147. In addition, our data suggested the annexin A2 (ANXA2) to be an essential interaction partner of β3GnT8 during the process of CD147 glycosylation. Collectively, these results provide a novel molecular mechanism for β3GnT8 in promotion of gastric cancer invasion and metastasis. Targeting β3GnT8 could serve as a new strategy for future gastric cancer therapy.
Collapse
Affiliation(s)
- Li Shen
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaoxia Dong
- Department of pharmacology, School of Basic Medicine, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Institute of Cancer Research, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
23
|
Jiang Z, Liu Z, Zou S, Ni J, Shen L, Zhou Y, Hua D, Wu S. Transcription factor c-jun regulates β3Gn-T8 expression in gastric cancer cell line SGC-7901. Oncol Rep 2016; 36:1353-60. [PMID: 27459970 DOI: 10.3892/or.2016.4959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/16/2016] [Indexed: 11/05/2022] Open
Abstract
Aberrant glycosylation, a common feature of malignant alteration, is partly due to changes in the expression of glycosyltransferases, including β1,3-N-acetyl-glucosaminyltrans-ferase 8 (β3Gn‑T8), which synthesizes poly-N-acetyllactosamine (poly-LacNAc) chains on β1,6 branched N‑glycans. Although the role of β3Gn‑T8 in tumors has been reported, the regulation of β3Gn‑T8 expression, however, is still poorly understood. In the present study, we used three online bioinformatic software tools to identify multiple c‑jun binding sites in the promoter of the β3Gn‑T8 gene. Using luciferase reporter assay, chromatin immunoprecipitation (ChIP) analysis, RT‑PCR and western blot analysis, we revealed that c‑jun could bind to and activate the β3Gn‑T8 promoter, thus upregulating β3Gn‑T8 expression. This was also confirmed by changes in β3Gn‑T8 activity as demonstrated by flow cytometry, immunofluorescence and lectin blot analysis using LEA lectin. Moreover, expression of glycoprotein HG‑CD147, the substrate of β3Gn‑T8, was also regulated by c‑jun. In addition, c‑jun and β3Gn‑T8 were more highly expressed in the gastric cancer tissues when compared to these levels in the adjacent non‑tumor gastric tissues, and β3Gn‑T8 expression was positively correlated with c‑jun expression. These results suggest that c‑jun plays a significant role in regulating the expression of β3Gn‑T8 in the SGC‑7901 cell line and may be involved in the development of malignancy via the activity of β3Gn‑T8.
Collapse
Affiliation(s)
- Zhi Jiang
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhenhua Liu
- Department of Inspection, Suzhou Health College, Suzhou, Jiangsu 215001, P.R. China
| | - Shitao Zou
- Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, Jiangsu 215001, P.R. China
| | - Jianlong Ni
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Li Shen
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yinghui Zhou
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Dong Hua
- The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
24
|
More SK, Chiplunkar SV, Kalraiya RD. Galectin-3-induced cell spreading and motility relies on distinct signaling mechanisms compared to fibronectin. Mol Cell Biochem 2016; 416:179-91. [DOI: 10.1007/s11010-016-2706-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
|
25
|
Chaudhari AD, Gude RP, Kalraiya RD, Chiplunkar SV. Endogenous galectin-3 expression levels modulate immune responses in galectin-3 transgenic mice. Mol Immunol 2015; 68:300-11. [PMID: 26442663 DOI: 10.1016/j.molimm.2015.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/13/2015] [Accepted: 09/22/2015] [Indexed: 01/13/2023]
Abstract
Galectin-3 (Gal-3), a β-galactoside-binding mammalian lectin, is involved in cancer progression and metastasis. However, there is an unmet need to identify the underlying mechanisms of cancer metastasis mediated by endogenous host galectin-3. Galectin-3 is also known to be an important regulator of immune responses. The present study was aimed at analysing how expression of endogenous galectin-3 regulates host immunity and lung metastasis in B16F10 murine melanoma model. Transgenic Gal-3(+/-) (hemizygous) and Gal-3(-/-) (null) mice exhibited decreased levels of Natural Killer (NK) cells and lower NK mediated cytotoxicity against YAC-1 tumor targets, compared to Gal-3(+/+) (wild-type) mice. On stimulation, Gal-3(+/-) and Gal-3(-/-) mice splenocytes showed increased T cell proliferation than Gal-3(+/+) mice. Intracellular calcium flux was found to be lower in activated T cells of Gal-3(-/-) mice as compared to T cells from Gal-3(+/+) and Gal-3(+/-) mice. In Gal-3(-/-) mice, serum Th1, Th2 and Th17 cytokine levels were found to be lowest, exhibiting dysregulation of pro-inflammatory and anti-inflammatory cytokines balance. Marked decrease in serum IFN-γ levels and splenic IFN-γR1 (IFN-γ Receptor 1) expressing T and NK cell percentages were observed in Gal-3(-/-) mice. On recombinant IFN-γ treatment of splenocytes in vitro, Suppressor of Cytokine Signaling (SOCS) 1 and SOCS3 protein expression was higher in Gal-3(-/-) mice compared to that in Gal-3(+/+) and Gal-3(+/-) mice; suggesting possible attenuation of Signal Transducer and Activator of Transcription (STAT) 1 mediated IFN-γ signaling in Gal-3(-/-) mice. The ability of B16F10 melanoma cells to form metastatic colonies in the lungs of Gal-3(+/+) and Gal-3(-/-) mice remained comparable, whereas it was found to be reduced in Gal-3(+/-) mice. Our data indicates that complete absence of endogenous host galectin-3 facilitates lung metastasis of B16F10 cells in mice, which may be contributed by dysregulated immune responses resulting from decreased NK cytotoxicity, disturbed serum Th1, Th2, Th17 cytokine milieu, reduced serum IFN-γ levels and attenuation of splenic STAT1 mediated IFN-γ signalling in Gal-3(-/-) mice.
Collapse
Affiliation(s)
- Aparna D Chaudhari
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Rajiv P Gude
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Rajiv D Kalraiya
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, Maharashtra, India
| | - Shubhada V Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, Maharashtra, India.
| |
Collapse
|
26
|
Agarwal AK, Srinivasan N, Godbole R, More SK, Budnar S, Gude RP, Kalraiya RD. Role of tumor cell surface lysosome-associated membrane protein-1 (LAMP1) and its associated carbohydrates in lung metastasis. J Cancer Res Clin Oncol 2015; 141:1563-74. [PMID: 25614122 DOI: 10.1007/s00432-015-1917-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 01/12/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE Expression of lysosome-associated membrane protein-1 (LAMP1) on the surface correlates with metastatic potential of B16 melanoma cells. Downregulation of their expression in high metastatic (B16F10) cells reduced their surface expression and metastatic potential. Present investigations explore if overexpression of LAMP1 on the surface of low metastatic (B16F1) cells augment their metastatic ability, and if so, how? METHODS B16F1 cells were transduced with lentiviral vector carrying mutant-LAMP1 (Y386A) (mutLAMP1). Surface expression of LAMP1 and carbohydrates was analyzed by flow cytometry, immunofluorescence and/or immunoprecipitation and Western blotting. Cell spreading and motility were assessed on components of extracellular matrix (ECM) (fibronectin) and basement membrane (BM) (matrigel), and galectin-3-coated coverslips/plates. Metastatic potential was assessed using experimental metastasis assay. RESULTS Pre-incubation with anti-LAMP1 antibodies significantly reduced lung metastasis of B16F10 cells. Overexpression of mutLAMP1 significantly increased its surface expression on B16F1 cells, resulting in increased cellular spreading and motility on fibronectin and matrigel. LAMP1 is the major carrier of poly-N-acetyllactosamine (polyLacNAc) on B16F10 cells. However, significantly higher expression of mutLAMP1 had no effect on galectin-3 binding on cell surface or on spreading or motility of cells on galectin-3-coated coverslips/plates. These cells also failed to show any gain in metastatic ability. This could be because LAMP1 from these cells carried significantly lower levels of polyLacNAc in comparison with B16F10 cells. CONCLUSIONS PolyLacNAc on B16F10 cells and galectin-3 on lungs are the major participants in melanoma metastasis. Although surface LAMP1 promotes interactions with organ ECM and BM, carbohydrates on LAMP1 play a decisive role in dictating lung metastasis.
Collapse
Affiliation(s)
- Akhil Kumar Agarwal
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai, 410210, India
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Cancer cells commonly display aberrant surface glycans and related glycoconjugate scaffolds. Compared with their normal counterparts, cancer cell glycans are variably produced and often structurally distinct, serving as biomarkers of cancer progression or as functional entities to malignancy. The glycan signature of a cancer cell is created by the collaborative activities of glycosyltransferases, glycosidases, nucleotide-sugar transporters, sulfotransferases, and glycan-bearing protein/lipid scaffolds. In a coordinated fashion, these factors regulate the synthesis of cancer cell glycans and thus are considered correlates of cancer cell behavior. Functionally, cancer cell glycans can serve as binding targets for endogenous lectin effectors, such as C-type selectins and S-type galectins. There has been a recent surge of important observations of the role of glycosytransferases, specifically α2,6 sialyltransferases, in regulating the length and lectin-binding features of serine/threonine (O)-glycans found on cancer cells. The capping activity of O-glycan-specific α2,6 sialyltransferases, in particular, has been found to regulate cancer growth and metastasis in a galectin-dependent manner. These findings highlight the functional importance of cancer cell O-glycans and related galectin-binding features in the virulent activity of cancer and raise the prospect of targeting cancer cell glycans as effective anticancer therapeutics.
Collapse
Affiliation(s)
- Charles J Dimitroff
- Department of Dermatology Brigham and Women's Hospital, Boston, Massachusetts. Department of Dermatology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
28
|
Lin TW, Chang HT, Chen CH, Chen CH, Lin SW, Hsu TL, Wong CH. Galectin-3 Binding Protein and Galectin-1 Interaction in Breast Cancer Cell Aggregation and Metastasis. J Am Chem Soc 2015; 137:9685-93. [PMID: 26168351 DOI: 10.1021/jacs.5b04744] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Galectin-3 binding protein (Gal-3BP) is a large hyperglycosylated protein that acts as a ligand for several galectins through glycan-dependent interactions. Gal-3BP can induce galectin-mediated tumor cell aggregation to increase the survival of cancer cells in the bloodstream during the metastatic process. However, the galectin interacting with Gal-3BP and its binding specificity has not been identified and structurally elucidated, mainly due to the limitation of mass spectrometry in glycan sequencing. To understand the role of Gal-3BP, we here used liquid chromatography-mass spectrometry combined with specific exoglycosidase reactions to determine the sequences of N-glycans on Gal-3BP from MCF-7 and MDA-MB-231 cells, especially the sequences with terminal sialylation and fucosylation, and addition of LacNAc repeat structures. The N-glycans from both strains are complex type with terminal α2,3-sialidic acid and core fucose linkages, with additional α1,2- and α1,3 fucose linkages found in MCF-7 cells. Compared with that from MCF-7, the Gal-3BP from MDA-MB-231 cells had fewer tetra-antennary structures, only α1,6-linked core fucoses, and more LacNAc repeat structures; the MDA-MB-231 cells had no surface galectin-3 but used surface galectin-1 for interaction with Gal-3BP to form large oligomers and cell aggregates. This study elucidates the specificity of Gal-3BP interacting with galectin-1 and the role of Gal-3BP in cancer cell aggregation and metastasis.
Collapse
Affiliation(s)
| | - Hui-Tzu Chang
- §Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Vasconcelos-Dos-Santos A, Oliveira IA, Lucena MC, Mantuano NR, Whelan SA, Dias WB, Todeschini AR. Biosynthetic Machinery Involved in Aberrant Glycosylation: Promising Targets for Developing of Drugs Against Cancer. Front Oncol 2015; 5:138. [PMID: 26161361 PMCID: PMC4479729 DOI: 10.3389/fonc.2015.00138] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 06/02/2015] [Indexed: 12/22/2022] Open
Abstract
Cancer cells depend on altered metabolism and nutrient uptake to generate and keep the malignant phenotype. The hexosamine biosynthetic pathway is a branch of glucose metabolism that produces UDP-GlcNAc and its derivatives, UDP-GalNAc and CMP-Neu5Ac and donor substrates used in the production of glycoproteins and glycolipids. Growing evidence demonstrates that alteration of the pool of activated substrates might lead to different glycosylation and cell signaling. It is already well established that aberrant glycosylation can modulate tumor growth and malignant transformation in different cancer types. Therefore, biosynthetic machinery involved in the assembly of aberrant glycans are becoming prominent targets for anti-tumor drugs. This review describes three classes of glycosylation, O-GlcNAcylation, N-linked, and mucin type O-linked glycosylation, involved in tumor progression, their biosynthesis and highlights the available inhibitors as potential anti-tumor drugs.
Collapse
Affiliation(s)
| | - Isadora A Oliveira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Miguel Clodomiro Lucena
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Natalia Rodrigues Mantuano
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Stephen A Whelan
- Department of Biochemistry, Cardiovascular Proteomics Center, Boston University School of Medicine , Boston, MA , USA
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| | - Adriane Regina Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro , Brasil
| |
Collapse
|
30
|
More SK, Srinivasan N, Budnar S, Bane SM, Upadhya A, Thorat RA, Ingle AD, Chiplunkar SV, Kalraiya RD. N-glycans and metastasis in galectin-3 transgenic mice. Biochem Biophys Res Commun 2015; 460:302-7. [PMID: 25791476 DOI: 10.1016/j.bbrc.2015.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/07/2015] [Indexed: 12/12/2022]
Abstract
Poly-N-acetyl-lactosamine (polyLacNAc) on N-glycans facilitate lung specific metastasis of melanoma cells by serving as high affinity ligands for galectin-3, expressed in highest amounts in the lungs, on almost all its tissue compartments including on the surface of vascular endothelium. PolyLacNAc not only aids in initial arrest on the organ endothelium but in all the events of extravasation. Inhibition of polyLacNAc synthesis, or competitive inhibition of its interaction with galectin-3 all inhibited these processes and experimental metastasis. Transgenic galectin-3 mice, viz., gal-3(+/+) (wild type), gal-3(+/-) (hemizygous) and gal-3(-/-) (null) have been used to prove that galectin-3/polyLacNAc interactions are indeed critical for lung specific metastasis. Gal-3(+/-) mice which showed <50% expression of galectin-3 on the lungs also showed proportionate decrease in the number of B16F10 melanoma metastatic colonies affirming that galectin-3 and polyLacNAc interactions are indeed key determinants of lung metastasis. However, surprisingly, the number and size of metastatic colonies in gal-3(-/-) mice was very similar as that seen in gal-3(+/+) mice. The levels of lactose binding lectins on the lungs and the transcripts of other galectins (galectin-1, -8 and -9) which are expressed on lungs and have similar sugar binding specificities as galectins-3, remain unchanged in gal-3(+/+) and gal-3(-/-) mice. Further, inhibition of N-glycosylation with Swainsonine (SW) which drastically reduces metastasis of B16F10 cells in gal-3(+/+) mice, did not affect lung metastasis when assessed in gal-3(-/-) mice. Together, these results rule out the possibility of some other galectin taking over the function of galectin-3 in gal-3(-/-) mice. Chimeric mice generated to assess if absence of any effect on metastasis is due to compromised tumor immunity by replacing bone marrow of gal-3(-/-) mice with that from gal-3(+/+) mice, also failed to impact melanoma metastasis. As galectin-3 regulates several immune functions including maturation of different immune cells, compromised tumor immunity could be the major determinant of melanoma metastasis in gal-3(-/-) mice and warrants thorough investigation.
Collapse
Affiliation(s)
- Shyam K More
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Nithya Srinivasan
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Srikanth Budnar
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland 4072, Australia
| | - Sanjay M Bane
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Archana Upadhya
- SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Rahul A Thorat
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Arvind D Ingle
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Shubhada V Chiplunkar
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Rajiv D Kalraiya
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India.
| |
Collapse
|
31
|
Dange MC, Agarwal AK, Kalraiya RD. Extracellular galectin-3 induces MMP9 expression by activating p38 MAPK pathway via lysosome-associated membrane protein-1 (LAMP1). Mol Cell Biochem 2015; 404:79-86. [PMID: 25739356 DOI: 10.1007/s11010-015-2367-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/21/2015] [Indexed: 11/24/2022]
Abstract
Matrix metalloproteinases (MMPs) play a key role in matrix remodelling and thus invasion and metastasis. Extracellular galectin-3 has been shown to induce MMP9 secretion. Here, we demonstrate that galectin-3 induces MMP9 at transcript level and it is dependent on the surface levels of poly-N-acetyllactosamine (polyLacNAc). By employing signalling pathway inhibitors, MMP9 expression was shown to be induced via p38 MAP-kinase pathway. Using clones of melanoma cells expressing shRNAs to lysosome-associated membrane protein-1 (LAMP1), a major carrier of polyLacNAc, surface LAMP1 was demonstrated to serve as one of the key mediators of galectin-3-induced MMP9 expression via p38 MAPK pathway.
Collapse
Affiliation(s)
- Manohar C Dange
- Kalraiya Lab, KS 131, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai, 410210, India
| | | | | |
Collapse
|
32
|
Shen L, Yu M, Xu X, Gao L, Ni J, Luo Z, Wu S. Knockdown of β3GnT8 reverses 5-fluorouracil resistance in human colorectal cancer cells via inhibition the biosynthesis of polylactosamine-type N-glycans. Int J Oncol 2014; 45:2560-8. [PMID: 25269761 DOI: 10.3892/ijo.2014.2672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/19/2014] [Indexed: 11/05/2022] Open
Abstract
Aberrant glycosylation is known to be associated with cancer chemoresistance. β-1,3-N-acetyl-glucosaminyltransferase (β3GnT)8, which synthesizes polylactosamine on β1-6 branched N-glycans, is dramatically upregulated in colorectal cancer (CRC). 5-Fluorouracil (5-FU) resistance remains a major obstacle to the chemotherapy of CRC. However, little is known with regard to the correlation between 5‑FU resistance and the expression of β3GnT8 in CRC. In this study, a 5-FU‑resistant cell line (SW620/5-FU) was generated, and 50% inhibition concentration (IC50) of 5-FU was determined by MTT assay. Flow cytometry and lectin blot analysis were performed to detect the alteration of polylactosamine structures. Quantitative RT-‑PCR and western blot analysis were used to identify and evaluate candidate genes involved in the synthesis of polylactosamine in SW620/5-FU cells. We found polylactosamine chains were significantly increased in SW620/5-FU cells. Inhibition of the biosynthesis of polylactosamine by 3'-azidothymidine (AZT) was able to reduce 5-FU tolerance. Further studies showed that β3GnT8 expression was also upregulated in 5-FU‑resistant cancer cells, and knockdown of β3GnT8 by RNA interference reversed 5-FU resistance through, at least partly, by suppressing the formation of polylactosamine. In conclusion, the alteration of β3GnT8 in CRC cells correlates with tumor sensitivity to the chemotherapeutic drug and has significant implication for the development of new treatment strategies.
Collapse
Affiliation(s)
- Li Shen
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xu Xu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Liping Gao
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jianlong Ni
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
33
|
Agarwal AK, Gude RP, Kalraiya RD. Regulation of melanoma metastasis to lungs by cell surface Lysosome Associated Membrane Protein-1 (LAMP1) via galectin-3. Biochem Biophys Res Commun 2014; 449:332-7. [PMID: 24845565 DOI: 10.1016/j.bbrc.2014.05.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/11/2014] [Indexed: 12/11/2022]
Abstract
Lysosome Associated Membrane Protein-1 (LAMP1), which lines the lysosomes, is often found to be expressed on surface of metastatic cells. We previously demonstrated that its surface expression on B16 melanoma variants correlates with metastatic potential. To establish the role of cell surface LAMP1 in metastasis and to understand the possible mechanism by which it facilitates lung colonization, LAMP1 was downregulated in high metastatic B16F10 cells using shRNAs cloned in a doxycycline inducible vector. This also resulted in significantly decreased LAMP1 on the cell surface. Being a major carrier of poly-N-acetyllactosamine (polyLacNAc) substituted β1,6 branched N-oligosaccharides, the high affinity ligands for galectin-3, LAMP1 down regulation also resulted in appreciably decreased binding of galectin-3 to the cell surface. LAMP1 has been shown to bind to Extracellular Matrix (ECM), Basement Membrane (BM) components and also to galectin-3 (via carbohydrates) which is known to get incorporated into the ECM and BM. Although, LAMP1 downregulation had a marginal effect on cellular spreading and motility on fibronectin and matrigel, it significantly altered the same on galectin-3, and ultimately leading to notably reduced lung metastasis. The results thus for the first time provide direct evidence that cell surface LAMP1 facilitates lung metastasis by providing ligands for galectin-3 which has been shown to be expressed in highest amounts on lungs and constitutively on its vascular endothelium.
Collapse
Affiliation(s)
- Akhil Kumar Agarwal
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Rajiv P Gude
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India
| | - Rajiv D Kalraiya
- Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Sector 22, Kharghar, Navi Mumbai 410210, India.
| |
Collapse
|
34
|
Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells. Clin Exp Metastasis 2014; 31:661-73. [PMID: 24952269 DOI: 10.1007/s10585-014-9657-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/14/2014] [Indexed: 12/28/2022]
Abstract
Interactions between molecules on the surface of tumor cells and those on the target organ endothelium play an important role in their arrest in an organ. Galectin-3 on the lung endothelium and high affinity ligands poly-N-acetyllactosamine (polyLacNAc) on N-oligosaccharides on melanoma cells facilitate such interactions. However, to extravasate and colonize an organ the cells must stabilize these interactions by spreading to retract endothelium, degrade exposed basement membrane (BM) and move into parenchyma and proliferate. Here, we show that galectin-3 is expressed on all the major compartments of the lungs and participates in not just promoting adhesion but also in spreading. We for the first time demonstrate that both soluble and immobilized galectin-3 induce secretion of MMP-9 required to breach vascular BM. Further, we show that immobilized galectin-3 is used as traction for the movement of cells. Downregulation of galactosyltransferases-I and -V resulted in significant loss in expression of polyLacNAc and thus reduced binding of galectin-3. This was accompanied with a loss in adhesion, spreading, MMP-9 secretion and motility of the cells on galectin-3 and thus their metastasis to lungs. Metastasis could also be inhibited by blocking surface polyLacNAc by pre-incubating cells with truncated galectin-3 (which lacked oligomerization domain) or by feeding mice with modified citrus pectin in drinking water. Overall, these results unequivocally show that polyLacNAc on melanoma cells and galectin-3 on the lungs play a critical role in arrest and extravasation of cells in the lungs and strategies that target these interactions inhibit lung metastasis.
Collapse
|
35
|
Clark ATR, Guimarães da Costa VML, Bandeira Costa L, Bezerra Cavalcanti CL, De Melo Rêgo MJB, Beltrão EIC. Differential expression patterns of N-acetylglucosaminyl transferases and polylactosamines in uterine lesions. Eur J Histochem 2014; 58:2334. [PMID: 24998922 PMCID: PMC4083322 DOI: 10.4081/ejh.2014.2334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/01/2022] Open
Abstract
Polylactosamine (polyLacNAc) is a fundamental structure in glycoconjugates and it is expressed in specific cells/tissues associated with the development and carcinogenesis. β1,3-N-acetylglucosaminyl transferases ((β3GnTs) play an important role in polyLacNAc synthesis, however the roles of these glycosyltransferases and their products in cancer progression are still unclear. In this sense, this work aimed to evaluate differential expression pattern of the N-acetylglucosaminyl transferases and polylactosamines in invasive and premalignant lesions of the uterus cervix. The expression of β3GnT2 and β3GnT3 were evaluated in normal (n=10) and uterine cervix lesions (n=120), both malignant [squamous carcinoma (SC)] and premalignant [cervical intraepithelial neoplasia (CIN), grades 1, 2 and 3] using immunohistochemistry. Besides, lectin histochemistry with Phytolacca americana lectin (PWM) and Wheat germ agglutinin (WGA) was also carried out to observe the presence of polyLacNAc chains and N-acetylglucosamine (GlcNAc), respectively. The β3GnT3 was expressed in almost all samples (99%) and β3GnT2 was higher expressed in disease samples mainly in CIN 3, when compared with normal (P=0.002), CIN 1 (P=0.009) and CIN 2 (P=0.03). The expression of polyLacNAc was higher is SC samples, when compared with normal (P=0.03), CIN 1 (P=0.02) and CIN 3 (P=0.004), and was observed only nuclear expression in nearly 50% of the SC samples, showing a statistically significant when compared with normal (P=0.01), CIN 1 (P=0.002), CIN 2 (P=0.007) and CIN 3 (P=0.04). Deferring from transferases and polyLacNAc chains, GlcNAc (WGA ligand) reveals a gradual staining pattern decrease with the increase of the lesion degree, being more expressed in CIN 1 lesions when compared with normal (P<0.0001), CIN 2 (P<0.0001), SC (P<0.0001) and CIN 3 (P=0.0003). Our data reveal that β3GnT2 and polyLacNAc may be involved in the progression of the pre-malignant lesions of the human uterine cervix. In addition, polyLacNAc expression only in the nucleus can be associated a poor prognostic in uterine lesions.
Collapse
|
36
|
Collins PM, Bum-Erdene K, Yu X, Blanchard H. Galectin-3 Interactions with Glycosphingolipids. J Mol Biol 2014; 426:1439-51. [DOI: 10.1016/j.jmb.2013.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 11/24/2022]
|
37
|
Gao L, Shen L, Yu M, Ni J, Dong X, Zhou Y, Wu S. Colon cancer cells treated with 5‑fluorouracil exhibit changes in polylactosamine‑type N‑glycans. Mol Med Rep 2014; 9:1697-702. [PMID: 24604396 DOI: 10.3892/mmr.2014.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 02/03/2014] [Indexed: 11/06/2022] Open
Abstract
5-Fluorouracil (5-FU) is the major chemotherapeutic agent for the treatment of colorectal carcinoma, which were found to have N-glycans containing polylactosamine on the cancer cell surface. Alterations in the expression and structure of polylactosamine glycans are associated with cellular differentiation and oncogenesis. However, little is known with regard to the correlation between the levels of polylactosamine expressed in colon cancer cells and the anticancer effect of 5-FU. In the present study, SW620 cells were treated with the half maximal inhibitory concentration (IC50; determined by MTT-assay) of 5-FU. Hoechst 33258 staining and flow cytometric analysis indicated that 5-FU administration resulted in apoptosis in SW620 cells. An increased percentage of cells in S phase was also observed among the SW620 cells treated with 5-FU. Under the same experimental conditions, a decrease in the 5-FU‑induced inhibition of polylactosamine glycans was recorded. However, an increase in the activity of alkaline phosphatase was also observed. Furthermore, pretreatment of the SW620 cells with 5-FU inhibited the expression of β1,3-N-acetylglucosaminyltransferase-8 (β3Gn-T8) and cluster of differentiation (CD)147 in a time-dependent manner. Overall, changes in glycosylation were associated with the anticancer effect of 5-FU in the colon cancer cells. In conclusion, polylactosamine may be a useful target for the identification of substances with anticancer activity.
Collapse
Affiliation(s)
- Liping Gao
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Li Shen
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jianlong Ni
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiaoxia Dong
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yinghui Zhou
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
38
|
Glycosylation of the laminin receptor (α3β1) regulates its association with tetraspanin CD151: Impact on cell spreading, motility, degradation and invasion of basement membrane by tumor cells. Exp Cell Res 2014; 322:249-64. [PMID: 24530578 DOI: 10.1016/j.yexcr.2014.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 11/27/2022]
Abstract
Invasion is the key requirement for cancer metastasis. Expression of β1,6 branched N-oligosaccharides associated with invasiveness, has been shown to promote adhesion to most Extra Cellular Matrix (ECM) and basement membrane (BM) components and haptotactic motility on ECM (fibronectin) but attenuate it on BM (laminin/matrigel) components. To explore the mechanism and to evaluate the significance of these observations in terms of invasion, highly invasive B16BL6 cells were compared with the parent (B16F10) cells or B16BL6 cells in which glycosylation was inhibited. We demonstrate that increased adhesion to matrix components induced secretion of MMP-9, important for invasion. Further, both the subunits of integrin receptors for fibronectin (α5β1) and laminin (α3β1) on B16BL6 cells were shown to carry these oligosaccharides. Although, glycosylation of receptors had no effect on their surface expression, it had same differential effect on cell spreading as haptotactic motility. Absence of correlation between invasiveness and expression of most tetraspanins (major regulators of integrin function) hints at an alternate mechanism. Here we show that glycosylation on α3β1 impedes its association with CD151 and modulates spreading and motility of cells apparently to reach an optimum required for invasion of BM. These studies demonstrate the complex mechanisms used by cancer cells to be invasive.
Collapse
|
39
|
Galectin-3 in cancer. Clin Chim Acta 2014; 431:185-91. [PMID: 24530298 DOI: 10.1016/j.cca.2014.01.019] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/04/2014] [Accepted: 01/09/2014] [Indexed: 11/21/2022]
Abstract
Galectin-3 (Gal-3) plays important roles in cell proliferation, adhesion, differentiation, angiogenesis and apoptosis in normal and pathologic tissues. Accumulated evidences indicate that Gal-3 is closely involved in tumor cell transformation, migration, invasion and metastasis. In this review, the associations of the expression and localization of Gal-3 as well as its potential action mechanism in tumorigenesis in a variety of cancers were summarized and concluded. Gal-3 is gaining its attraction as a potential new biomarker for the diagnosis, treatment and prognosis of certain tumors.
Collapse
|
40
|
Suzuki O, Abe M. Recent progress and new perspectives in lymphoma glycobiology. Fukushima J Med Sci 2014; 59:1-14. [PMID: 23842509 DOI: 10.5387/fms.59.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glycosylation has recently become one of the most significant subjects in tumor biology, and cell surface glycosylation is closely associated with various biological phenomena in tumor cells. However, the biological significance of cell surface glycosylation and sialic acid linked to glycans in human malignant lymphoma is not well elucidated. We have determined that 1) sialylation or loss of N-glycosylation is closely associated with a worse prognosis in human diffuse large B-cell lymphoma (DLBCL), and 2) glycosylation or sialic acid on the surface of lymphoma cells plays significant roles in cell adhesion or invasion to the extracellular matrix, cell growth, apoptosis and cell death. In the present review, the biological functions of glycosylation or sialic acid in human malignant lymphoma are discussed.
Collapse
Affiliation(s)
- Osamu Suzuki
- Department of Diagnostic Pathology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | | |
Collapse
|
41
|
Vladoiu MC, Labrie M, St-Pierre Y. Intracellular galectins in cancer cells: potential new targets for therapy (Review). Int J Oncol 2014; 44:1001-14. [PMID: 24452506 DOI: 10.3892/ijo.2014.2267] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/02/2013] [Indexed: 11/06/2022] Open
Abstract
Dysregulation of galectin expression is frequently observed in cancer tissues. Such an abnormal expression pattern often correlates with aggressiveness and relapse in many types of cancer. Because galectins have the ability to modulate functions that are important for cell survival, migration and metastasis, they also represent attractive targets for cancer therapy. This has been well-exploited for extracellular galectins, which bind glycoconjugates expressed on the surface of cancer cells. Although the existence of intracellular functions of galectins has been known for many years, an increasing number of studies indicate that these proteins can also alter tumor progression through their interaction with intracellular ligands. In fact, in some instances, the interactions of galectins with their intracellular ligands seem to occur independently of their carbohydrate recognition domain. Such findings call for a change in the basic assumptions, or paradigms, concerning the activity of galectins in cancer and may force us to revisit our strategies to develop galectin antagonists for the treatment of cancer.
Collapse
Affiliation(s)
| | | | - Yves St-Pierre
- INRS-Institut Armand-Frappier, Laval, QC H7V 1B7, Canada
| |
Collapse
|
42
|
α2,6 Sialylation associated with increased β1,6-branched N-oligosaccharides influences cellular adhesion and invasion. J Biosci 2013; 38:867-76. [DOI: 10.1007/s12038-013-9382-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Expression and function of galectins in the endometrium and at the human feto-maternal interface. Placenta 2013; 34:863-72. [PMID: 23911101 DOI: 10.1016/j.placenta.2013.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/08/2013] [Accepted: 07/11/2013] [Indexed: 12/12/2022]
Abstract
Galectins are classified as lectins that share structural similarities and bind β-galactosides via a conserved carbohydrate recognition domain. So far 16 out of 19 identified galectins were shown to be present in humans and numerous studies revealed galectins as pivotal modulators of cell death, differentiation and growth. Galectins were highlighted to interact with both the adaptive and innate immune response. In the field of reproductive medicine and placenta research different roles for galectins have been proposed. Several galectins, being abundantly present at the human feto-maternal interphase and endometrium, were hypothesized to significantly contribute to endometrial receptivity and pregnancy physiology. Hence, this review outlines selected aspects of galectin action within endometrial function and at the feto-maternal interphase. Further current knowledge on galectins in reproductive and pregnancy disorders like endometriosis, abortion or preeclampsia is summarized.
Collapse
|
44
|
Peng W, Pranskevich J, Nycholat C, Gilbert M, Wakarchuk W, Paulson JC, Razi N. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans. Glycobiology 2012; 22:1453-64. [PMID: 22786570 DOI: 10.1093/glycob/cws101] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poly-N-acetyllactosamine extensions on N- and O-linked glycans are increasingly recognized as biologically important structural features, but access to these structures has not been widely available. Here, we report a detailed substrate specificity and catalytic efficiency of the bacterial β3-N-acetylglucosaminyltransferase (β3GlcNAcT) from Helicobacter pylori that can be adapted to the synthesis of a rich diversity of glycans with poly-LacNAc extensions. This glycosyltransferase has surprisingly broad acceptor specificity toward type-1, -2, -3 and -4 galactoside motifs on both linear and branched glycans, found commonly on N-linked, O-linked and I-antigen glycans. This finding enables the production of complex ligands for glycan-binding studies. Although the enzyme shows preferential activity for type 2 (Galβ1-4GlcNAc) acceptors, it is capable of transferring N-acetylglucosamine (GlcNAc) in β1-3 linkage to type-1 (Galβ1-3GlcNAc) or type-3/4 (Galβ1-3GalNAcα/β) sequences. Thus, by alternating the use of the H. pylori β3GlcNAcT with galactosyltransferases that make the β1-4 or β1-3 linkages, various N-linked, O-linked and I-antigen acceptors could be elongated with type-2 and type-1 LacNAc repeats. Finally, one-pot incubation of di-LacNAc biantennary N-glycopeptide with the β3GlcNAcT and GalT-1 in the presence of uridine diphosphate (UDP)-GlcNAc and UDP-Gal, yielded products with 15 additional LacNAc units on the precursor, which was seen as a series of sequential ion peaks representing alternative additions of GlcNAc and Gal residues, on matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Overall, our data demonstrate a broader substrate specificity for the H. pylori β3GlcNAcT than previously recognized and demonstrate its ability as a potent resource for preparative chemo-enzymatic synthesis of complex glycans.
Collapse
Affiliation(s)
- Wenjie Peng
- Glycan Array Synthesis Core D, Consortium for Functional Glycomics, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
L1CAM from human melanoma carries a novel type of N-glycan with Galβ1-4Galβ1- motif. Involvement of N-linked glycans in migratory and invasive behaviour of melanoma cells. Glycoconj J 2012; 30:205-25. [PMID: 22544341 PMCID: PMC3606521 DOI: 10.1007/s10719-012-9374-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 03/13/2012] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
Dramatic changes in glycan biosynthesis during oncogenic transformation result in the emergence of marker glycans on the cell surface. We analysed the N-linked glycans of L1CAM from different stages of melanoma progression, using high-performance liquid chromatography combined with exoglycosidase sequencing, matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry, and lectin probes. L1CAM oligosaccharides are heavily sialylated, mainly digalactosylated, biantennary complex-type structures with galactose β1-4/3-linked to GlcNAc and with or without fucose α1-3/6-linked to GlcNAc. Hybrid, bisected hybrid, bisected triantennary and tetraantennary complex oligosaccharides, and β1-6-branched complex-type glycans with or without lactosamine extensions are expresses at lower abundance. We found that metastatic L1CAM possesses only α2-6-linked sialic acid and the loss of α2-3-linked sialic acid in L1CAM is a phenomenon observed during the transition of melanoma cells from VGP to a metastatic stage. Unexpectedly, we found a novel monoantennary complex-type oligosaccharide with a Galβ1-4Galβ1- epitope capped with sialic acid residues A1[3]G(4)2S2-3. To our knowledge this is the first report documenting the presence of this oligosaccharide in human cancer. The novel and unique N-glycan should be recognised as a new class of human melanoma marker. In functional tests we demonstrated that the presence of cell surface α2-3-linked sialic acid facilitates the migratory behaviour and increases the invasiveness of primary melanoma cells, and it enhances the motility of metastatic cells. The presence of cell surface α2-6-linked sialic acid enhances the invasive potential of both primary and metastatic melanoma cells. Complex-type oligosaccharides in L1CAM enhance the invasiveness of metastatic melanoma cells.
Collapse
|
46
|
Wang SH, Wu SW, Khoo KH. MS-based glycomic strategies for probing the structural details of polylactosaminoglycan chain on N-glycans and glycoproteomic identification of its protein carriers. Proteomics 2011; 11:2812-29. [PMID: 21656680 DOI: 10.1002/pmic.201000794] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/31/2011] [Accepted: 04/20/2011] [Indexed: 01/19/2023]
Abstract
Most MS-based glycomic and glycoproteomic analyses focus on identifying changes in terminal glyco-epitopes represented by sialylation and fucosylation at specific positions of the terminal N-acetyllactosamine units. Much less attention was accorded to the underlying linear or branched poly-N-acetyllactosamine extension from the N-glycan trimannosyl core other than a simple inference of its presence due to mass data and hence glycosyl compositional assignment. Using the EA.hy926 cell line derived from human umbilical vein endothelial cells (HUVEC), we have systematically investigated the MALDI- and ESI-MS-based methodologies for probing the structural details of endothelial polylactosaminoglycans at both MS and MS(2) levels in conjunction with the use of endo-β-galactosidase to identify branching motifs and initiation sites. We showed that the polylactosaminoglycan chains on the N-glycans of EA.hy926 were less sialylated and fucosylated but more extended and branched than those of human umbilical vein endothelial cells, thus demonstrating a fundamental glycomic difference. For EA.hy926 that was investigated in more details, its polylactosaminoglycan chains were shown to be not restricted to extending from a specific antenna including the biologically important 6-arm position. Finally, experimental conditions for glycopeptide enrichment by tomato lectin were further optimized, which led to identification of over 40 candidate endothelial membrane protein carriers of polylactosaminoglycans by proteomic analysis.
Collapse
Affiliation(s)
- Shui-Hua Wang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
47
|
Xue Y, Bao L, Xiao X, Ding L, Lei J, Ju H. Noncovalent functionalization of carbon nanotubes with lectin for label-free dynamic monitoring of cell-surface glycan expression. Anal Biochem 2011; 410:92-7. [DOI: 10.1016/j.ab.2010.11.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/03/2010] [Accepted: 11/11/2010] [Indexed: 11/25/2022]
|
48
|
Ding L, Xiao X, Chen Y, Qian R, Bao L, Ju H. Competition-based transfer of carbohydrate expression information from a cell-adhered surface to a secondary surface. Chem Commun (Camb) 2011; 47:3742-4. [DOI: 10.1039/c1cc10164a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Han E, Ding L, Jin S, Ju H. Electrochemiluminescent biosensing of carbohydrate-functionalized CdS nanocomposites for in situ label-free analysis of cell surface carbohydrate. Biosens Bioelectron 2011; 26:2500-5. [DOI: 10.1016/j.bios.2010.10.044] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 10/12/2010] [Accepted: 10/25/2010] [Indexed: 12/28/2022]
|
50
|
Mortezai N, Harder S, Schnabel C, Moors E, Gauly M, Schlüter H, Wagener C, Buck F. Tandem Affinity Depletion: A Combination of Affinity Fractionation and Immunoaffinity Depletion Allows the Detection of Low-Abundance Components in the Complex Proteomes of Body Fluids. J Proteome Res 2010; 9:6126-34. [DOI: 10.1021/pr100224y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Naghmeh Mortezai
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany, and Department of Animal Science, University of Göttingen, Albrecht-Thaer-Weg 3, D-37075 Göttingen, Germany
| | - Sönke Harder
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany, and Department of Animal Science, University of Göttingen, Albrecht-Thaer-Weg 3, D-37075 Göttingen, Germany
| | - Claudia Schnabel
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany, and Department of Animal Science, University of Göttingen, Albrecht-Thaer-Weg 3, D-37075 Göttingen, Germany
| | - Eva Moors
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany, and Department of Animal Science, University of Göttingen, Albrecht-Thaer-Weg 3, D-37075 Göttingen, Germany
| | - Matthias Gauly
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany, and Department of Animal Science, University of Göttingen, Albrecht-Thaer-Weg 3, D-37075 Göttingen, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany, and Department of Animal Science, University of Göttingen, Albrecht-Thaer-Weg 3, D-37075 Göttingen, Germany
| | - Christoph Wagener
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany, and Department of Animal Science, University of Göttingen, Albrecht-Thaer-Weg 3, D-37075 Göttingen, Germany
| | - Friedrich Buck
- Institute of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany, and Department of Animal Science, University of Göttingen, Albrecht-Thaer-Weg 3, D-37075 Göttingen, Germany
| |
Collapse
|